#include "napi.h" #include "common.h" #include "whisper.h" #include #include #include #include #include struct whisper_params { int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t n_processors = 1; int32_t offset_t_ms = 0; int32_t offset_n = 0; int32_t duration_ms = 0; int32_t max_context = -1; int32_t max_len = 0; int32_t best_of = 5; int32_t beam_size = -1; float word_thold = 0.01f; float entropy_thold = 2.4f; float logprob_thold = -1.0f; bool speed_up = false; bool translate = false; bool diarize = false; bool output_txt = false; bool output_vtt = false; bool output_srt = false; bool output_wts = false; bool output_csv = false; bool print_special = false; bool print_colors = false; bool print_progress = false; bool no_timestamps = false; std::string language = "en"; std::string prompt; std::string model = "../../ggml-large.bin"; std::vector fname_inp = {}; std::vector fname_out = {}; }; struct whisper_print_user_data { const whisper_params * params; const std::vector> * pcmf32s; }; // 500 -> 00:05.000 // 6000 -> 01:00.000 std::string to_timestamp(int64_t t, bool comma = false) { int64_t msec = t * 10; int64_t hr = msec / (1000 * 60 * 60); msec = msec - hr * (1000 * 60 * 60); int64_t min = msec / (1000 * 60); msec = msec - min * (1000 * 60); int64_t sec = msec / 1000; msec = msec - sec * 1000; char buf[32]; snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec); return std::string(buf); } int timestamp_to_sample(int64_t t, int n_samples) { return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100))); } void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * state, int n_new, void * user_data) { const auto & params = *((whisper_print_user_data *) user_data)->params; const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s; const int n_segments = whisper_full_n_segments(ctx); std::string speaker = ""; int64_t t0; int64_t t1; // print the last n_new segments const int s0 = n_segments - n_new; if (s0 == 0) { printf("\n"); } for (int i = s0; i < n_segments; i++) { if (!params.no_timestamps || params.diarize) { t0 = whisper_full_get_segment_t0(ctx, i); t1 = whisper_full_get_segment_t1(ctx, i); } if (!params.no_timestamps) { printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str()); } if (params.diarize && pcmf32s.size() == 2) { const int64_t n_samples = pcmf32s[0].size(); const int64_t is0 = timestamp_to_sample(t0, n_samples); const int64_t is1 = timestamp_to_sample(t1, n_samples); double energy0 = 0.0f; double energy1 = 0.0f; for (int64_t j = is0; j < is1; j++) { energy0 += fabs(pcmf32s[0][j]); energy1 += fabs(pcmf32s[1][j]); } if (energy0 > 1.1*energy1) { speaker = "(speaker 0)"; } else if (energy1 > 1.1*energy0) { speaker = "(speaker 1)"; } else { speaker = "(speaker ?)"; } //printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, %s\n", is0, is1, energy0, energy1, speaker.c_str()); } // colorful print bug // const char * text = whisper_full_get_segment_text(ctx, i); printf("%s%s", speaker.c_str(), text); // with timestamps or speakers: each segment on new line if (!params.no_timestamps || params.diarize) { printf("\n"); } fflush(stdout); } } int run(whisper_params ¶ms, std::vector> &result) { if (params.fname_inp.empty()) { fprintf(stderr, "error: no input files specified\n"); return 2; } if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) { fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); exit(0); } // whisper init struct whisper_context * ctx = whisper_init_from_file(params.model.c_str()); if (ctx == nullptr) { fprintf(stderr, "error: failed to initialize whisper context\n"); return 3; } // initial prompt std::vector prompt_tokens; if (!params.prompt.empty()) { prompt_tokens.resize(1024); prompt_tokens.resize(whisper_tokenize(ctx, params.prompt.c_str(), prompt_tokens.data(), prompt_tokens.size())); fprintf(stderr, "\n"); fprintf(stderr, "initial prompt: '%s'\n", params.prompt.c_str()); fprintf(stderr, "initial tokens: [ "); for (int i = 0; i < (int) prompt_tokens.size(); ++i) { fprintf(stderr, "%d ", prompt_tokens[i]); } fprintf(stderr, "]\n"); } for (int f = 0; f < (int) params.fname_inp.size(); ++f) { const auto fname_inp = params.fname_inp[f]; const auto fname_out = f < (int)params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f]; std::vector pcmf32; // mono-channel F32 PCM std::vector> pcmf32s; // stereo-channel F32 PCM if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) { fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str()); continue; } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info()); } // print some info about the processing { fprintf(stderr, "\n"); if (!whisper_is_multilingual(ctx)) { if (params.language != "en" || params.translate) { params.language = "en"; params.translate = false; fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); } } fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n", __func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE, params.n_threads, params.n_processors, params.language.c_str(), params.translate ? "translate" : "transcribe", params.no_timestamps ? 0 : 1); fprintf(stderr, "\n"); } // run the inference { whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY; wparams.print_realtime = false; wparams.print_progress = params.print_progress; wparams.print_timestamps = !params.no_timestamps; wparams.print_special = params.print_special; wparams.translate = params.translate; wparams.language = params.language.c_str(); wparams.n_threads = params.n_threads; wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx; wparams.offset_ms = params.offset_t_ms; wparams.duration_ms = params.duration_ms; wparams.token_timestamps = params.output_wts || params.max_len > 0; wparams.thold_pt = params.word_thold; wparams.entropy_thold = params.entropy_thold; wparams.logprob_thold = params.logprob_thold; wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len; wparams.speed_up = params.speed_up; wparams.greedy.best_of = params.best_of; wparams.beam_search.beam_size = params.beam_size; wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data(); wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size(); whisper_print_user_data user_data = { ¶ms, &pcmf32s }; // this callback is called on each new segment if (!wparams.print_realtime) { wparams.new_segment_callback = whisper_print_segment_callback; wparams.new_segment_callback_user_data = &user_data; } // example for abort mechanism // in this example, we do not abort the processing, but we could if the flag is set to true // the callback is called before every encoder run - if it returns false, the processing is aborted { static bool is_aborted = false; // NOTE: this should be atomic to avoid data race wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) { bool is_aborted = *(bool*)user_data; return !is_aborted; }; wparams.encoder_begin_callback_user_data = &is_aborted; } if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) { fprintf(stderr, "failed to process audio\n"); return 10; } } } const int n_segments = whisper_full_n_segments(ctx); result.resize(n_segments); for (int i = 0; i < n_segments; ++i) { const char * text = whisper_full_get_segment_text(ctx, i); const int64_t t0 = whisper_full_get_segment_t0(ctx, i); const int64_t t1 = whisper_full_get_segment_t1(ctx, i); result[i].emplace_back(to_timestamp(t0, true)); result[i].emplace_back(to_timestamp(t1, true)); result[i].emplace_back(text); } whisper_print_timings(ctx); whisper_free(ctx); return 0; } Napi::Object whisper(const Napi::CallbackInfo& info) { Napi::Env env = info.Env(); if (info.Length() <= 0 || !info[0].IsObject()) { Napi::TypeError::New(env, "object expected").ThrowAsJavaScriptException(); } whisper_params params; std::vector> result; Napi::Object whisper_params = info[0].As(); std::string language = whisper_params.Get("language").As(); std::string model = whisper_params.Get("model").As(); std::string input = whisper_params.Get("fname_inp").As(); params.language = language; params.model = model; params.fname_inp.emplace_back(input); // run model run(params, result); fprintf(stderr, "RESULT:\n"); for (auto sentence:result) { fprintf(stderr, "t0: %s, t1: %s, content: %s \n", sentence[0].c_str(), sentence[1].c_str(), sentence[2].c_str()); } Napi::Object res = Napi::Array::New(env, result.size()); for (uint64_t i = 0; i < result.size(); ++i) { Napi::Object tmp = Napi::Array::New(env, 3); for (uint64_t j = 0; j < 3; ++j) { tmp[j] = Napi::String::New(env, result[i][j]); } res[i] = tmp; } return res; } Napi::Object Init(Napi::Env env, Napi::Object exports) { exports.Set( Napi::String::New(env, "whisper"), Napi::Function::New(env, whisper) ); return exports; } NODE_API_MODULE(whisper, Init);