// Voice assistant example // // Speak short text commands to the microphone. // This program will detect your voice command and convert them to text. // // ref: https://github.com/ggerganov/whisper.cpp/issues/171 // #include "common.h" #include "common-sdl.h" #include "whisper.h" #include #include #include #include #include #include #include #include #include #include // command-line parameters struct whisper_params { int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t prompt_ms = 5000; int32_t command_ms = 8000; int32_t capture_id = -1; int32_t max_tokens = 32; int32_t audio_ctx = 0; float vad_thold = 0.6f; float freq_thold = 100.0f; bool speed_up = false; bool translate = false; bool print_special = false; bool print_energy = false; bool no_timestamps = true; std::string language = "en"; std::string model = "models/ggml-base.en.bin"; std::string fname_out; std::string commands; std::string prompt; }; void whisper_print_usage(int argc, char ** argv, const whisper_params & params); bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { for (int i = 1; i < argc; i++) { std::string arg = argv[i]; if (arg == "-h" || arg == "--help") { whisper_print_usage(argc, argv, params); exit(0); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } else if (arg == "-pms" || arg == "--prompt-ms") { params.prompt_ms = std::stoi(argv[++i]); } else if (arg == "-cms" || arg == "--command-ms") { params.command_ms = std::stoi(argv[++i]); } else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); } else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); } else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); } else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); } else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); } else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; } else if (arg == "-tr" || arg == "--translate") { params.translate = true; } else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; } else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; } else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; } else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; } else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; } else if (arg == "-cmd" || arg == "--commands") { params.commands = argv[++i]; } else if (arg == "-p" || arg == "--prompt") { params.prompt = argv[++i]; } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); whisper_print_usage(argc, argv, params); exit(0); } } return true; } void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) { fprintf(stderr, "\n"); fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help [default] show this help message and exit\n"); fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads); fprintf(stderr, " -pms N, --prompt-ms N [%-7d] prompt duration in milliseconds\n", params.prompt_ms); fprintf(stderr, " -cms N, --command-ms N [%-7d] command duration in milliseconds\n", params.command_ms); fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id); fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens); fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx); fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold); fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold); fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false"); fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false"); fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false"); fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false"); fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str()); fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str()); fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str()); fprintf(stderr, " -cmd FNAME, --commands FNAME [%-7s] text file with allowed commands\n", params.commands.c_str()); fprintf(stderr, " -p, --prompt [%-7s] the required activation prompt\n", params.prompt.c_str()); fprintf(stderr, "\n"); } std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector & pcmf32, float & prob, int64_t & t_ms) { const auto t_start = std::chrono::high_resolution_clock::now(); prob = 0.0f; t_ms = 0; whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); wparams.print_progress = false; wparams.print_special = params.print_special; wparams.print_realtime = false; wparams.print_timestamps = !params.no_timestamps; wparams.translate = params.translate; wparams.no_context = true; wparams.single_segment = true; wparams.max_tokens = params.max_tokens; wparams.language = params.language.c_str(); wparams.n_threads = params.n_threads; wparams.audio_ctx = params.audio_ctx; wparams.speed_up = params.speed_up; if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { return ""; } int prob_n = 0; std::string result; const int n_segments = whisper_full_n_segments(ctx); for (int i = 0; i < n_segments; ++i) { const char * text = whisper_full_get_segment_text(ctx, i); result += text; const int n_tokens = whisper_full_n_tokens(ctx, i); for (int j = 0; j < n_tokens; ++j) { const auto token = whisper_full_get_token_data(ctx, i, j); prob += token.p; ++prob_n; } } if (prob_n > 0) { prob /= prob_n; } const auto t_end = std::chrono::high_resolution_clock::now(); t_ms = std::chrono::duration_cast(t_end - t_start).count(); return result; } // compute similarity between two strings using Levenshtein distance float similarity(const std::string & s0, const std::string & s1) { const size_t len0 = s0.size() + 1; const size_t len1 = s1.size() + 1; std::vector col(len1, 0); std::vector prevCol(len1, 0); for (size_t i = 0; i < len1; i++) { prevCol[i] = i; } for (size_t i = 0; i < len0; i++) { col[0] = i; for (size_t j = 1; j < len1; j++) { col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1)); } col.swap(prevCol); } const float dist = prevCol[len1 - 1]; return 1.0f - (dist / std::max(s0.size(), s1.size())); } std::vector read_allowed_commands(const std::string & fname) { std::vector allowed_commands; std::ifstream ifs(fname); if (!ifs.is_open()) { return allowed_commands; } std::string line; while (std::getline(ifs, line)) { line = ::trim(line); if (line.empty()) { continue; } std::transform(line.begin(), line.end(),line.begin(), ::tolower); allowed_commands.push_back(std::move(line)); } return allowed_commands; } std::vector get_words(const std::string &txt) { std::vector words; std::istringstream iss(txt); std::string word; while (iss >> word) { words.push_back(word); } return words; } // command-list mode // guide the transcription to match the most likely command from a provided list int process_command_list(struct whisper_context * ctx, audio_async &audio, const whisper_params ¶ms) { fprintf(stderr, "\n"); fprintf(stderr, "%s: guided mode\n", __func__); std::vector allowed_commands = read_allowed_commands(params.commands); if (allowed_commands.empty()) { fprintf(stderr, "%s: error: failed to read allowed commands from '%s'\n", __func__, params.commands.c_str()); return 2; } int max_len = 0; std::vector> allowed_tokens; for (const auto & cmd : allowed_commands) { whisper_token tokens[1024]; allowed_tokens.emplace_back(); for (int l = 0; l < (int) cmd.size(); ++l) { // NOTE: very important to add the whitespace ! // the reason is that the first decoded token starts with a whitespace too! std::string ss = std::string(" ") + cmd.substr(0, l + 1); const int n = whisper_tokenize(ctx, ss.c_str(), tokens, 1024); if (n < 0) { fprintf(stderr, "%s: error: failed to tokenize command '%s'\n", __func__, cmd.c_str()); return 3; } if (n == 1) { allowed_tokens.back().push_back(tokens[0]); } } max_len = std::max(max_len, (int) cmd.size()); } fprintf(stderr, "%s: allowed commands [ tokens ]:\n", __func__); fprintf(stderr, "\n"); for (int i = 0; i < (int) allowed_commands.size(); ++i) { fprintf(stderr, " - \033[1m%-*s\033[0m = [", max_len, allowed_commands[i].c_str()); for (const auto & token : allowed_tokens[i]) { fprintf(stderr, " %5d", token); } fprintf(stderr, " ]\n"); } std::string k_prompt = "select one from the available words: "; for (int i = 0; i < (int) allowed_commands.size(); ++i) { if (i > 0) { k_prompt += ", "; } k_prompt += allowed_commands[i]; } k_prompt += ". selected word: "; // tokenize prompt std::vector k_tokens; { k_tokens.resize(1024); const int n = whisper_tokenize(ctx, k_prompt.c_str(), k_tokens.data(), 1024); if (n < 0) { fprintf(stderr, "%s: error: failed to tokenize prompt '%s'\n", __func__, k_prompt.c_str()); return 4; } k_tokens.resize(n); } fprintf(stderr, "\n"); fprintf(stderr, "%s: prompt: '%s'\n", __func__, k_prompt.c_str()); fprintf(stderr, "%s: tokens: [", __func__); for (const auto & token : k_tokens) { fprintf(stderr, " %d", token); } fprintf(stderr, " ]\n"); fprintf(stderr, "\n"); fprintf(stderr, "%s: listening for a command ...\n", __func__); fprintf(stderr, "\n"); bool is_running = true; std::vector pcmf32_cur; std::vector pcmf32_prompt; // main loop while (is_running) { // handle Ctrl + C is_running = sdl_poll_events(); // delay std::this_thread::sleep_for(std::chrono::milliseconds(100)); audio.get(2000, pcmf32_cur); if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) { fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__); const auto t_start = std::chrono::high_resolution_clock::now(); whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); wparams.print_progress = false; wparams.print_special = params.print_special; wparams.print_realtime = false; wparams.print_timestamps = !params.no_timestamps; wparams.translate = params.translate; wparams.no_context = true; wparams.single_segment = true; wparams.max_tokens = 1; wparams.language = params.language.c_str(); wparams.n_threads = params.n_threads; wparams.audio_ctx = params.audio_ctx; wparams.speed_up = params.speed_up; wparams.prompt_tokens = k_tokens.data(); wparams.prompt_n_tokens = k_tokens.size(); // run the transformer and a single decoding pass if (whisper_full(ctx, wparams, pcmf32_cur.data(), pcmf32_cur.size()) != 0) { fprintf(stderr, "%s: ERROR: whisper_full() failed\n", __func__); break; } // estimate command probability // NOTE: not optimal { const auto * logits = whisper_get_logits(ctx); std::vector probs(whisper_n_vocab(ctx), 0.0f); // compute probs from logits via softmax { float max = -1e9; for (int i = 0; i < (int) probs.size(); ++i) { max = std::max(max, logits[i]); } float sum = 0.0f; for (int i = 0; i < (int) probs.size(); ++i) { probs[i] = expf(logits[i] - max); sum += probs[i]; } for (int i = 0; i < (int) probs.size(); ++i) { probs[i] /= sum; } } std::vector> probs_id; double psum = 0.0; for (int i = 0; i < (int) allowed_commands.size(); ++i) { probs_id.emplace_back(probs[allowed_tokens[i][0]], i); for (int j = 1; j < (int) allowed_tokens[i].size(); ++j) { probs_id.back().first += probs[allowed_tokens[i][j]]; } probs_id.back().first /= allowed_tokens[i].size(); psum += probs_id.back().first; } // normalize for (auto & p : probs_id) { p.first /= psum; } // sort descending { using pair_type = decltype(probs_id)::value_type; std::sort(probs_id.begin(), probs_id.end(), [](const pair_type & a, const pair_type & b) { return a.first > b.first; }); } // print the commands and the respective probabilities { fprintf(stdout, "\n"); for (const auto & cmd : probs_id) { fprintf(stdout, "%s: %s%-*s%s = %f | ", __func__, "\033[1m", max_len, allowed_commands[cmd.second].c_str(), "\033[0m", cmd.first); for (int token : allowed_tokens[cmd.second]) { fprintf(stdout, "'%4s' %f ", whisper_token_to_str(ctx, token), probs[token]); } fprintf(stdout, "\n"); } } // best command { const auto t_end = std::chrono::high_resolution_clock::now(); const float prob = probs_id[0].first; const int index = probs_id[0].second; fprintf(stdout, "\n"); fprintf(stdout, "%s: detected command: %s%s%s | p = %f | t = %d ms\n", __func__, "\033[1m", allowed_commands[index].c_str(), "\033[0m", prob, (int) std::chrono::duration_cast(t_end - t_start).count()); fprintf(stdout, "\n"); } } audio.clear(); } } return 0; } // always-prompt mode // transcribe the voice into text after valid prompt int always_prompt_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) { bool is_running = true; bool ask_prompt = true; float prob = 0.0f; std::vector pcmf32_cur; const std::string k_prompt = params.prompt; const int k_prompt_length = get_words(k_prompt).size(); fprintf(stderr, "\n"); fprintf(stderr, "%s: always-prompt mode\n", __func__); // main loop while (is_running) { // handle Ctrl + C is_running = sdl_poll_events(); // delay std::this_thread::sleep_for(std::chrono::milliseconds(100)); if (ask_prompt) { fprintf(stdout, "\n"); fprintf(stdout, "%s: The prompt is: '%s%s%s'\n", __func__, "\033[1m", k_prompt.c_str(), "\033[0m"); fprintf(stdout, "\n"); ask_prompt = false; } { audio.get(2000, pcmf32_cur); if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) { fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__); int64_t t_ms = 0; // detect the commands audio.get(params.command_ms, pcmf32_cur); const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms)); const auto words = get_words(txt); std::string prompt; std::string command; for (int i = 0; i < (int) words.size(); ++i) { if (i < k_prompt_length) { prompt += words[i] + " "; } else { command += words[i] + " "; } } const float sim = similarity(prompt, k_prompt); //debug //fprintf(stdout, "command size: %i\n", command_length); if ((sim > 0.7f) && (command.size() > 0)) { fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms); } fprintf(stdout, "\n"); audio.clear(); } } } return 0; } // general-purpose mode // freely transcribe the voice into text int process_general_transcription(struct whisper_context * ctx, audio_async &audio, const whisper_params ¶ms) { bool is_running = true; bool have_prompt = false; bool ask_prompt = true; float prob0 = 0.0f; float prob = 0.0f; std::vector pcmf32_cur; std::vector pcmf32_prompt; const std::string k_prompt = "Ok Whisper, start listening for commands."; fprintf(stderr, "\n"); fprintf(stderr, "%s: general-purpose mode\n", __func__); // main loop while (is_running) { // handle Ctrl + C is_running = sdl_poll_events(); // delay std::this_thread::sleep_for(std::chrono::milliseconds(100)); if (ask_prompt) { fprintf(stdout, "\n"); fprintf(stdout, "%s: Say the following phrase: '%s%s%s'\n", __func__, "\033[1m", k_prompt.c_str(), "\033[0m"); fprintf(stdout, "\n"); ask_prompt = false; } { audio.get(2000, pcmf32_cur); if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) { fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__); int64_t t_ms = 0; if (!have_prompt) { // wait for activation phrase audio.get(params.prompt_ms, pcmf32_cur); const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob0, t_ms)); fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms); const float sim = similarity(txt, k_prompt); if (txt.length() < 0.8*k_prompt.length() || txt.length() > 1.2*k_prompt.length() || sim < 0.8f) { fprintf(stdout, "%s: WARNING: prompt not recognized, try again\n", __func__); ask_prompt = true; } else { fprintf(stdout, "\n"); fprintf(stdout, "%s: The prompt has been recognized!\n", __func__); fprintf(stdout, "%s: Waiting for voice commands ...\n", __func__); fprintf(stdout, "\n"); // save the audio for the prompt pcmf32_prompt = pcmf32_cur; have_prompt = true; } } else { // we have heard the activation phrase, now detect the commands audio.get(params.command_ms, pcmf32_cur); // prepend the prompt audio pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end()); const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms)); prob = 100.0f*(prob - prob0); //fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str()); // find the prompt in the text float best_sim = 0.0f; size_t best_len = 0; for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) { const auto prompt = txt.substr(0, n); const float sim = similarity(prompt, k_prompt); //fprintf(stderr, "%s: prompt = '%s', sim = %f\n", __func__, prompt.c_str(), sim); if (sim > best_sim) { best_sim = sim; best_len = n; } } const std::string command = ::trim(txt.substr(best_len)); fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms); fprintf(stdout, "\n"); } audio.clear(); } } } return 0; } int main(int argc, char ** argv) { whisper_params params; if (whisper_params_parse(argc, argv, params) == false) { return 1; } if (whisper_lang_id(params.language.c_str()) == -1) { fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); whisper_print_usage(argc, argv, params); exit(0); } // whisper init struct whisper_context * ctx = whisper_init_from_file(params.model.c_str()); // print some info about the processing { fprintf(stderr, "\n"); if (!whisper_is_multilingual(ctx)) { if (params.language != "en" || params.translate) { params.language = "en"; params.translate = false; fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); } } fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n", __func__, params.n_threads, params.language.c_str(), params.translate ? "translate" : "transcribe", params.no_timestamps ? 0 : 1); fprintf(stderr, "\n"); } // init audio audio_async audio(30*1000); if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) { fprintf(stderr, "%s: audio.init() failed!\n", __func__); return 1; } audio.resume(); // wait for 1 second to avoid any buffered noise std::this_thread::sleep_for(std::chrono::milliseconds(1000)); audio.clear(); int ret_val = 0; if (!params.commands.empty()) { ret_val = process_command_list(ctx, audio, params); } else if (!params.prompt.empty()) { ret_val = always_prompt_transcription(ctx, audio, params); } else { ret_val = process_general_transcription(ctx, audio, params); } audio.pause(); whisper_print_timings(ctx); whisper_free(ctx); return ret_val; }