// Real-time speech recognition of input from a microphone // // A very quick-n-dirty implementation serving mainly as a proof of concept. // #include "whisper.h" #include <SDL.h> #include <SDL_audio.h> #include <cassert> #include <cstdio> #include <string> #include <thread> #include <vector> #include <fstream> #include <mutex> // 500 -> 00:05.000 // 6000 -> 01:00.000 std::string to_timestamp(int64_t t) { int64_t sec = t/100; int64_t msec = t - sec*100; int64_t min = sec/60; sec = sec - min*60; char buf[32]; snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec); return std::string(buf); } // command-line parameters struct whisper_params { int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t step_ms = 3000; int32_t length_ms = 10000; int32_t keep_ms = 200; int32_t capture_id = -1; int32_t max_tokens = 32; int32_t audio_ctx = 0; float vad_thold = 0.6f; float freq_thold = 100.0f; bool speed_up = false; bool translate = false; bool print_special = false; bool no_context = true; bool no_timestamps = false; std::string language = "en"; std::string model = "models/ggml-base.en.bin"; std::string fname_out = ""; }; void whisper_print_usage(int argc, char ** argv, const whisper_params & params); bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { for (int i = 1; i < argc; i++) { std::string arg = argv[i]; if (arg == "-h" || arg == "--help") { whisper_print_usage(argc, argv, params); exit(0); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } else if ( arg == "--step") { params.step_ms = std::stoi(argv[++i]); } else if ( arg == "--length") { params.length_ms = std::stoi(argv[++i]); } else if ( arg == "--keep") { params.keep_ms = std::stoi(argv[++i]); } else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); } else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); } else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); } else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); } else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); } else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; } else if (arg == "-tr" || arg == "--translate") { params.translate = true; } else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; } else if (arg == "-kc" || arg == "--keep-context") { params.no_context = false; } else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; } else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; } else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); whisper_print_usage(argc, argv, params); exit(0); } } return true; } void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) { fprintf(stderr, "\n"); fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help [default] show this help message and exit\n"); fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads); fprintf(stderr, " --step N [%-7d] audio step size in milliseconds\n", params.step_ms); fprintf(stderr, " --length N [%-7d] audio length in milliseconds\n", params.length_ms); fprintf(stderr, " --keep N [%-7d] audio to keep from previous step in ms\n", params.keep_ms); fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id); fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens); fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx); fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold); fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold); fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false"); fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false"); fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false"); fprintf(stderr, " -kc, --keep-context [%-7s] keep context between audio chunks\n", params.no_context ? "false" : "true"); fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str()); fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str()); fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str()); fprintf(stderr, "\n"); } // // SDL Audio capture // class audio_async { public: audio_async(int len_ms); ~audio_async(); bool init(int capture_id, int sample_rate); // start capturing audio via the provided SDL callback // keep last len_ms seconds of audio in a circular buffer bool resume(); bool pause(); bool clear(); // callback to be called by SDL void callback(uint8_t * stream, int len); // get audio data from the circular buffer void get(int ms, std::vector<float> & audio); private: SDL_AudioDeviceID m_dev_id_in = 0; int m_len_ms = 0; int m_sample_rate = 0; bool m_running = false; std::mutex m_mutex; std::vector<float> m_audio; std::vector<float> m_audio_new; size_t m_audio_pos = 0; size_t m_audio_len = 0; }; audio_async::audio_async(int len_ms) { m_len_ms = len_ms; } audio_async::~audio_async() { if (m_dev_id_in) { SDL_CloseAudioDevice(m_dev_id_in); } } bool audio_async::init(int capture_id, int sample_rate) { SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO); if (SDL_Init(SDL_INIT_AUDIO) < 0) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError()); return false; } SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE); { int nDevices = SDL_GetNumAudioDevices(SDL_TRUE); fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices); for (int i = 0; i < nDevices; i++) { fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE)); } } SDL_AudioSpec capture_spec_requested; SDL_AudioSpec capture_spec_obtained; SDL_zero(capture_spec_requested); SDL_zero(capture_spec_obtained); capture_spec_requested.freq = sample_rate; capture_spec_requested.format = AUDIO_F32; capture_spec_requested.channels = 1; capture_spec_requested.samples = 1024; capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) { audio_async * audio = (audio_async *) userdata; audio->callback(stream, len); }; capture_spec_requested.userdata = this; if (capture_id >= 0) { fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE)); m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0); } else { fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__); m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0); } if (!m_dev_id_in) { fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError()); m_dev_id_in = 0; return false; } else { fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in); fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq); fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format, capture_spec_requested.format); fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels, capture_spec_requested.channels); fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples); } m_sample_rate = capture_spec_obtained.freq; m_audio.resize((m_sample_rate*m_len_ms)/1000); return true; } bool audio_async::resume() { if (!m_dev_id_in) { fprintf(stderr, "%s: no audio device to resume!\n", __func__); return false; } if (m_running) { fprintf(stderr, "%s: already running!\n", __func__); return false; } SDL_PauseAudioDevice(m_dev_id_in, 0); m_running = true; return true; } bool audio_async::pause() { if (!m_dev_id_in) { fprintf(stderr, "%s: no audio device to pause!\n", __func__); return false; } if (!m_running) { fprintf(stderr, "%s: already paused!\n", __func__); return false; } SDL_PauseAudioDevice(m_dev_id_in, 1); m_running = false; return true; } bool audio_async::clear() { if (!m_dev_id_in) { fprintf(stderr, "%s: no audio device to clear!\n", __func__); return false; } if (!m_running) { fprintf(stderr, "%s: not running!\n", __func__); return false; } { std::lock_guard<std::mutex> lock(m_mutex); m_audio_pos = 0; m_audio_len = 0; } return true; } // callback to be called by SDL void audio_async::callback(uint8_t * stream, int len) { if (!m_running) { return; } const size_t n_samples = len / sizeof(float); m_audio_new.resize(n_samples); memcpy(m_audio_new.data(), stream, n_samples * sizeof(float)); //fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len); { std::lock_guard<std::mutex> lock(m_mutex); if (m_audio_pos + n_samples > m_audio.size()) { const size_t n0 = m_audio.size() - m_audio_pos; memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float)); memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float)); m_audio_pos = (m_audio_pos + n_samples) % m_audio.size(); m_audio_len = m_audio.size(); } else { memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float)); m_audio_pos = (m_audio_pos + n_samples) % m_audio.size(); m_audio_len = std::min(m_audio_len + n_samples, m_audio.size()); } } } void audio_async::get(int ms, std::vector<float> & result) { if (!m_dev_id_in) { fprintf(stderr, "%s: no audio device to get audio from!\n", __func__); return; } if (!m_running) { fprintf(stderr, "%s: not running!\n", __func__); return; } result.clear(); { std::lock_guard<std::mutex> lock(m_mutex); if (ms <= 0) { ms = m_len_ms; } size_t n_samples = (m_sample_rate * ms) / 1000; if (n_samples > m_audio_len) { n_samples = m_audio_len; } result.resize(n_samples); int s0 = m_audio_pos - n_samples; if (s0 < 0) { s0 += m_audio.size(); } if (s0 + n_samples > m_audio.size()) { const size_t n0 = m_audio.size() - s0; memcpy(result.data(), &m_audio[s0], n0 * sizeof(float)); memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float)); } else { memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float)); } } } /////////////////////////// void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) { const float rc = 1.0f / (2.0f * M_PI * cutoff); const float dt = 1.0f / sample_rate; const float alpha = dt / (rc + dt); float y = data[0]; for (size_t i = 1; i < data.size(); i++) { y = alpha * (y + data[i] - data[i - 1]); data[i] = y; } } bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) { const int n_samples = pcmf32.size(); const int n_samples_last = (sample_rate * last_ms) / 1000; if (n_samples_last >= n_samples) { // not enough samples - assume no speech return false; } if (freq_thold > 0.0f) { high_pass_filter(pcmf32, freq_thold, sample_rate); } float energy_all = 0.0f; float energy_last = 0.0f; for (int i = 0; i < n_samples; i++) { energy_all += fabsf(pcmf32[i]); if (i >= n_samples - n_samples_last) { energy_last += fabsf(pcmf32[i]); } } energy_all /= n_samples; energy_last /= n_samples_last; if (verbose) { fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold); } if (energy_last > vad_thold*energy_all) { return false; } return true; } int main(int argc, char ** argv) { whisper_params params; if (whisper_params_parse(argc, argv, params) == false) { return 1; } params.keep_ms = std::min(params.keep_ms, params.step_ms); // cannot be more than step_ms const int n_samples_step = (params.step_ms *1e-3)*WHISPER_SAMPLE_RATE; const int n_samples_len = (params.length_ms*1e-3)*WHISPER_SAMPLE_RATE; const int n_samples_keep = (params.keep_ms *1e-3)*WHISPER_SAMPLE_RATE; const int n_samples_30s = (30000 *1e-3)*WHISPER_SAMPLE_RATE; const int n_new_line = params.length_ms / params.step_ms - 1; // number of steps to print new line const bool use_vad = n_samples_step <= 0; // sliding window mode uses VAD params.no_timestamps = !use_vad; params.no_context = use_vad; params.max_tokens = 0; // init audio audio_async audio(params.length_ms); if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) { fprintf(stderr, "%s: audio.init() failed!\n", __func__); return 1; } audio.resume(); // whisper init if (whisper_lang_id(params.language.c_str()) == -1) { fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); whisper_print_usage(argc, argv, params); exit(0); } struct whisper_context * ctx = whisper_init(params.model.c_str()); std::vector<float> pcmf32 (n_samples_30s, 0.0f); std::vector<float> pcmf32_old(n_samples_30s, 0.0f); std::vector<float> pcmf32_new(n_samples_30s, 0.0f); std::vector<whisper_token> prompt_tokens; // print some info about the processing { fprintf(stderr, "\n"); if (!whisper_is_multilingual(ctx)) { if (params.language != "en" || params.translate) { params.language = "en"; params.translate = false; fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); } } fprintf(stderr, "%s: processing %d samples (step = %.1f sec / len = %.1f sec / keep = %.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n", __func__, n_samples_step, float(n_samples_step)/WHISPER_SAMPLE_RATE, float(n_samples_len )/WHISPER_SAMPLE_RATE, float(n_samples_keep)/WHISPER_SAMPLE_RATE, params.n_threads, params.language.c_str(), params.translate ? "translate" : "transcribe", params.no_timestamps ? 0 : 1); if (!use_vad) { fprintf(stderr, "%s: n_new_line = %d\n", __func__, n_new_line); } else { fprintf(stderr, "%s: using VAD, will transcribe on speech activity\n", __func__); } fprintf(stderr, "\n"); } int n_iter = 0; bool is_running = true; std::ofstream fout; if (params.fname_out.length() > 0) { fout.open(params.fname_out); if (!fout.is_open()) { fprintf(stderr, "%s: failed to open output file '%s'!\n", __func__, params.fname_out.c_str()); return 1; } } printf("[Start speaking]"); fflush(stdout); auto t_last = std::chrono::high_resolution_clock::now(); const auto t_start = t_last; // main audio loop while (is_running) { // handle Ctrl + C { SDL_Event event; while (SDL_PollEvent(&event)) { switch (event.type) { case SDL_QUIT: { is_running = false; } break; default: break; } } if (!is_running) { break; } } if (!is_running) { break; } // process new audio if (!use_vad) { while (true) { audio.get(params.step_ms, pcmf32_new); if ((int) pcmf32_new.size() > 2*n_samples_step) { fprintf(stderr, "\n\n%s: WARNING: cannot process audio fast enough, dropping audio ...\n\n", __func__); audio.clear(); continue; } if ((int) pcmf32_new.size() >= n_samples_step) { audio.clear(); break; } SDL_Delay(1); } const int n_samples_new = pcmf32_new.size(); // take up to params.length_ms audio from previous iteration const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_keep + n_samples_len - n_samples_new)); //printf("processing: take = %d, new = %d, old = %d\n", n_samples_take, n_samples_new, (int) pcmf32_old.size()); pcmf32.resize(n_samples_new + n_samples_take); for (int i = 0; i < n_samples_take; i++) { pcmf32[i] = pcmf32_old[pcmf32_old.size() - n_samples_take + i]; } memcpy(pcmf32.data() + n_samples_take, pcmf32_new.data(), n_samples_new*sizeof(float)); pcmf32_old = pcmf32; } else { const auto t_now = std::chrono::high_resolution_clock::now(); const auto t_diff = std::chrono::duration_cast<std::chrono::milliseconds>(t_now - t_last).count(); if (t_diff < 2000) { std::this_thread::sleep_for(std::chrono::milliseconds(100)); continue; } audio.get(2000, pcmf32_new); if (vad_simple(pcmf32_new, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, false)) { audio.get(params.length_ms, pcmf32); } else { std::this_thread::sleep_for(std::chrono::milliseconds(100)); continue; } t_last = t_now; } // run the inference { whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); wparams.print_progress = false; wparams.print_special = params.print_special; wparams.print_realtime = false; wparams.print_timestamps = !params.no_timestamps; wparams.translate = params.translate; wparams.no_context = true; wparams.single_segment = !use_vad; wparams.max_tokens = params.max_tokens; wparams.language = params.language.c_str(); wparams.n_threads = params.n_threads; wparams.audio_ctx = params.audio_ctx; wparams.speed_up = params.speed_up; wparams.prompt_tokens = params.no_context ? nullptr : prompt_tokens.data(); wparams.prompt_n_tokens = params.no_context ? 0 : prompt_tokens.size(); if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { fprintf(stderr, "%s: failed to process audio\n", argv[0]); return 6; } // print result; { if (!use_vad) { printf("\33[2K\r"); // print long empty line to clear the previous line printf("%s", std::string(100, ' ').c_str()); printf("\33[2K\r"); } else { const int64_t t1 = (t_last - t_start).count()/1000000; const int64_t t0 = std::max(0.0, t1 - pcmf32.size()*1000.0/WHISPER_SAMPLE_RATE); printf("\n"); printf("### Transcription %d START | t0 = %d ms | t1 = %d ms\n", n_iter, (int) t0, (int) t1); printf("\n"); } const int n_segments = whisper_full_n_segments(ctx); for (int i = 0; i < n_segments; ++i) { const char * text = whisper_full_get_segment_text(ctx, i); if (params.no_timestamps) { printf("%s", text); fflush(stdout); if (params.fname_out.length() > 0) { fout << text; } } else { const int64_t t0 = whisper_full_get_segment_t0(ctx, i); const int64_t t1 = whisper_full_get_segment_t1(ctx, i); printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text); if (params.fname_out.length() > 0) { fout << "[" << to_timestamp(t0) << " --> " << to_timestamp(t1) << "] " << text << std::endl; } } } if (params.fname_out.length() > 0) { fout << std::endl; } if (use_vad){ printf("\n"); printf("### Transcription %d END\n", n_iter); } } ++n_iter; if (!use_vad && (n_iter % n_new_line) == 0) { printf("\n"); // keep part of the audio for next iteration to try to mitigate word boundary issues pcmf32_old = std::vector<float>(pcmf32.end() - n_samples_keep, pcmf32.end()); // Add tokens of the last full length segment as the prompt if (!params.no_context) { prompt_tokens.clear(); const int n_segments = whisper_full_n_segments(ctx); for (int i = 0; i < n_segments; ++i) { const int token_count = whisper_full_n_tokens(ctx, i); for (int j = 0; j < token_count; ++j) { prompt_tokens.push_back(whisper_full_get_token_id(ctx, i, j)); } } } } } } audio.pause(); whisper_print_timings(ctx); whisper_free(ctx); return 0; }