diff --git a/models/convert-h5-to-ggml.py b/models/convert-h5-to-ggml.py new file mode 100644 index 0000000..61d29e8 --- /dev/null +++ b/models/convert-h5-to-ggml.py @@ -0,0 +1,184 @@ +import io +import os +import sys +import struct +import json +import code +import torch +import numpy as np + +from transformers import WhisperForConditionalGeneration + +conv_map = {'self_attn_layer_norm': 'attn_ln', + 'encoder_attn.k_proj': 'attn.key', + 'self_attn.out_proj': 'attn.out', + 'encoder_attn.out_proj': 'cross_attn.out', + 'self_attn.q_proj': 'attn.query', + 'encoder_attn.q_proj': 'cross_attn.query', + 'self_attn.v_proj': 'attn.value', + 'encoder_attn.v_proj': 'cross_attn.value', + 'encoder_attn_layer_norm': 'cross_attn_ln', + 'fc1': 'mlp.0', + 'fc2': 'mlp.2', + 'final_layer_norm': 'mlp_ln', + 'encoder.layer_norm.bias': 'encoder.ln_post.bias', + 'encoder.layer_norm.weight': 'encoder.ln_post.weight', + 'encoder.embed_positions.weight': 'encoder.positional_embedding', + 'decoder.layer_norm.bias': 'decoder.ln.bias', + 'decoder.layer_norm.weight': 'decoder.ln.weight', + 'decoder.embed_positions.weight': 'decoder.positional_embedding', + 'decoder.embed_tokens.weight': 'decoder.token_embedding.weight', +} + +# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a corresponding list of unicode strings. + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a signficant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + And avoids mapping to whitespace/control characters the bpe code barfs on. + """ + bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8+n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + +if len(sys.argv) < 4: + print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n") + sys.exit(1) + +dir_model = sys.argv[1] +dir_whisper = sys.argv[2] +dir_out = sys.argv[3] + +with open(dir_model + "/vocab.json", "r") as f: + encoder = json.load(f) +with open(dir_model + "/added_tokens.json", "r") as f: + encoder_added = json.load(f) +with open(dir_model + "/config.json", "r") as f: + hparams = json.load(f) + +model = WhisperForConditionalGeneration.from_pretrained(dir_model) + +#code.interact(local=locals()) + +n_mels = hparams["num_mel_bins"] +with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f: + filters = torch.from_numpy(f[f"mel_{n_mels}"]) + +dir_tokenizer = dir_model + +fname_out = dir_out + "/ggml-model.bin" + +with open(dir_tokenizer + "/vocab.json", "r", encoding="utf8") as f: + tokens = json.load(f) + + +use_f16 = True + +fout = open(fname_out, "wb") + +fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex +fout.write(struct.pack("i", hparams["vocab_size"])) +fout.write(struct.pack("i", hparams["max_source_positions"])) +fout.write(struct.pack("i", hparams["d_model"])) +fout.write(struct.pack("i", hparams["decoder_attention_heads"])) +fout.write(struct.pack("i", hparams["decoder_layers"])) +fout.write(struct.pack("i", hparams["max_length"])) +fout.write(struct.pack("i", hparams["d_model"])) +fout.write(struct.pack("i", hparams["encoder_attention_heads"])) +fout.write(struct.pack("i", hparams["encoder_layers"])) +fout.write(struct.pack("i", hparams["num_mel_bins"])) +fout.write(struct.pack("i", use_f16)) + +fout.write(struct.pack("i", filters.shape[0])) +fout.write(struct.pack("i", filters.shape[1])) +for i in range(filters.shape[0]): + for j in range(filters.shape[1]): + fout.write(struct.pack("f", filters[i][j])) + +byte_encoder = bytes_to_unicode() +byte_decoder = {v:k for k, v in byte_encoder.items()} + +fout.write(struct.pack("i", len(tokens))) + +tokens = sorted(tokens.items(), key=lambda x: x[1]) +for key in tokens: + text = bytearray([byte_decoder[c] for c in key[0]]) + fout.write(struct.pack("i", len(text))) + fout.write(text) + +list_vars = model.state_dict() +for name in list_vars.keys(): + if name == "proj_out.weight": + print('Skipping', name) + continue + + src = name + + nn = name + nn = nn.split(".")[1:] + if nn[1] == "layers": + nn[1] = "blocks" + if ".".join(nn[3:-1]) == "self_attn.k_proj": + mapped = "attn.key" if nn[0] == "encoder" else "cross_attn.key" + else: + mapped = conv_map[".".join(nn[3:-1])] + name = ".".join(nn[:3] + [mapped] + nn[-1:]) + else: + name = ".".join(nn) + name = conv_map[name] if name in conv_map else name + + print(src, ' -> ', name) + data = list_vars[src].squeeze().numpy() + data = data.astype(np.float16) + + # reshape conv bias from [n] to [n, 1] + if name == "encoder.conv1.bias" or \ + name == "encoder.conv2.bias": + data = data.reshape(data.shape[0], 1) + print(" Reshaped variable: " + name + " to shape: ", data.shape) + + n_dims = len(data.shape) + print(name, n_dims, data.shape) + + # looks like the whisper models are in f16 by default + # so we need to convert the small tensors to f32 until we fully support f16 in ggml + # ftype == 0 -> float32, ftype == 1 -> float16 + ftype = 1; + if use_f16: + if n_dims < 2 or \ + name == "encoder.conv1.bias" or \ + name == "encoder.conv2.bias" or \ + name == "encoder.positional_embedding" or \ + name == "decoder.positional_embedding": + print(" Converting to float32") + data = data.astype(np.float32) + ftype = 0 + else: + data = data.astype(np.float32) + ftype = 0 + + # header + str = name.encode('utf-8') + fout.write(struct.pack("iii", n_dims, len(str), ftype)) + for i in range(n_dims): + fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) + fout.write(str); + + # data + data.tofile(fout) + +fout.close() + +print("Done. Output file: " + fname_out) +print("")