From 89d8ee3ee51af5c715c5c8ac32704e6f50e1c69c Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 25 Oct 2022 20:43:10 +0300 Subject: [PATCH] Update README.md --- README.md | 25 ++++++++++++------------- 1 file changed, 12 insertions(+), 13 deletions(-) diff --git a/README.md b/README.md index fa63b95..551130f 100644 --- a/README.md +++ b/README.md @@ -135,7 +135,7 @@ The command downloads the `base.en` model converted to custom `ggml` format and For detailed usage instructions, run: `./main -h` -Note that `whisper.cpp` currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool. +Note that the [main](examples/main) example currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool. For example, you can use `ffmpeg` like this: ```java @@ -171,6 +171,9 @@ make large Here is another example of transcribing a [3:24 min speech](https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg) in about half a minute on a MacBook M1 Pro, using `medium.en` model: +
+ Expand to see the result + ```java $ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8 @@ -237,6 +240,7 @@ whisper_print_timings: encode time = 19552.61 ms / 814.69 ms per layer whisper_print_timings: decode time = 13249.96 ms / 552.08 ms per layer whisper_print_timings: total time = 33686.27 ms ``` +
## Real-time audio input example @@ -250,18 +254,6 @@ More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/i https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4 -The [stream](examples/stream) tool depends on SDL2 library to capture audio from the microphone. You can build it like this: - -```bash -# Install SDL2 on Linux -sudo apt-get install libsdl2-dev - -# Install SDL2 on Mac OS -brew install sdl2 - -make stream -``` - ## Confidence color-coding Adding the `--print-colors` argument will print the transcribed text using an experimental color coding strategy @@ -306,6 +298,13 @@ the Accelerate framework utilizes the special-purpose AMX coprocessor available | medium | 1.5 GB | ~2.6 GB | | large | 2.9 GB | ~4.7 GB | +## Benchmarks + +In order to have an objective comparison of the performance of the inference across different system configurations, +use the [bench](examples/bench) tool. The tool simply runs the Encoder part of the model and prints how much time it +took to execute it. The results are summarized in the following Github issue: + +[Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89) ## ggml format