diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index db47a66..da0b37c 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -20,7 +20,7 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}) if (EMSCRIPTEN) add_subdirectory(whisper.wasm) - add_subdirectory(talk) + add_subdirectory(talk.wasm) else() add_subdirectory(main) add_subdirectory(stream) diff --git a/examples/talk/CMakeLists.txt b/examples/talk.wasm/CMakeLists.txt similarity index 90% rename from examples/talk/CMakeLists.txt rename to examples/talk.wasm/CMakeLists.txt index 90cd2d9..abb9fde 100644 --- a/examples/talk/CMakeLists.txt +++ b/examples/talk.wasm/CMakeLists.txt @@ -22,7 +22,7 @@ if (WHISPER_WASM_SINGLE_FILE) TARGET ${TARGET} POST_BUILD COMMAND ${CMAKE_COMMAND} -E copy ${CMAKE_BINARY_DIR}/bin/libtalk.js - ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/talk/talk.js + ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/talk.wasm/talk.js ) endif() @@ -38,9 +38,9 @@ set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \ ") # -# talk +# talk.wasm # -set(TARGET talk) +set(TARGET talk.wasm) configure_file(${CMAKE_CURRENT_SOURCE_DIR}/index-tmpl.html ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/index.html @ONLY) diff --git a/examples/talk/README.md b/examples/talk.wasm/README.md similarity index 100% rename from examples/talk/README.md rename to examples/talk.wasm/README.md diff --git a/examples/talk/emscripten.cpp b/examples/talk.wasm/emscripten.cpp similarity index 99% rename from examples/talk/emscripten.cpp rename to examples/talk.wasm/emscripten.cpp index 1c36464..47176fb 100644 --- a/examples/talk/emscripten.cpp +++ b/examples/talk.wasm/emscripten.cpp @@ -949,7 +949,7 @@ bool gpt2_eval( /////////////////////////////// GPT-2 END //////////////////////////////// -constexpr int N_THREAD = 7; +constexpr int N_THREAD = 8; struct gpt2_state { std::string prompt_base = R"(Hello, how are you? diff --git a/examples/talk/index-tmpl.html b/examples/talk.wasm/index-tmpl.html similarity index 99% rename from examples/talk/index-tmpl.html rename to examples/talk.wasm/index-tmpl.html index 51d61a9..abaea13 100644 --- a/examples/talk/index-tmpl.html +++ b/examples/talk.wasm/index-tmpl.html @@ -118,7 +118,7 @@ Build time: @GIT_DATE@ | Commit hash: @GIT_SHA1@ | Commit subject: @GIT_COMMIT_SUBJECT@ | - Source Code | + Source Code | diff --git a/examples/talk/gpt-2.cpp b/examples/talk/gpt-2.cpp deleted file mode 100644 index 8a35af5..0000000 --- a/examples/talk/gpt-2.cpp +++ /dev/null @@ -1,793 +0,0 @@ -#include "ggml/ggml.h" - -#include "utils.h" - -#include -#include -#include -#include -#include -#include -#include -#include - -// default hparams (GPT-2 117M) -struct gpt2_hparams { - int32_t n_vocab = 50257; - int32_t n_ctx = 1024; - int32_t n_embd = 768; - int32_t n_head = 12; - int32_t n_layer = 12; - int32_t f16 = 1; -}; - -struct gpt2_layer { - // normalization - struct ggml_tensor * ln_1_g; - struct ggml_tensor * ln_1_b; - - struct ggml_tensor * ln_2_g; - struct ggml_tensor * ln_2_b; - - // attention - struct ggml_tensor * c_attn_attn_w; - struct ggml_tensor * c_attn_attn_b; - - struct ggml_tensor * c_attn_proj_w; - struct ggml_tensor * c_attn_proj_b; - - // mlp - struct ggml_tensor * c_mlp_fc_w; - struct ggml_tensor * c_mlp_fc_b; - - struct ggml_tensor * c_mlp_proj_w_trans; // transposed for efficiency - struct ggml_tensor * c_mlp_proj_b; -}; - -struct gpt2_model { - gpt2_hparams hparams; - - // normalization - struct ggml_tensor * ln_f_g; - struct ggml_tensor * ln_f_b; - - struct ggml_tensor * wte; // position embedding - struct ggml_tensor * wpe; // token embedding - - std::vector layers; - - // key + value memory - struct ggml_tensor * memory_k; - struct ggml_tensor * memory_v; - - // - struct ggml_context * ctx; - std::map tensors; -}; - -// load the model's weights from a file -bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) { - printf("%s: loading model from '%s'\n", __func__, fname.c_str()); - - auto fin = std::ifstream(fname, std::ios::binary); - if (!fin) { - fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); - return false; - } - - // verify magic - { - uint32_t magic; - fin.read((char *) &magic, sizeof(magic)); - if (magic != 0x67676d6c) { - fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); - return false; - } - } - - // load hparams - { - auto & hparams = model.hparams; - - fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); - fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); - fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); - fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); - fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); - fin.read((char *) &hparams.f16, sizeof(hparams.f16)); - - printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); - printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); - printf("%s: n_embd = %d\n", __func__, hparams.n_embd); - printf("%s: n_head = %d\n", __func__, hparams.n_head); - printf("%s: n_layer = %d\n", __func__, hparams.n_layer); - printf("%s: f16 = %d\n", __func__, hparams.f16); - } - - // load vocab - { - int32_t n_vocab = 0; - fin.read((char *) &n_vocab, sizeof(n_vocab)); - - if (n_vocab != model.hparams.n_vocab) { - fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", - __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); - return false; - } - - std::string word; - for (int i = 0; i < n_vocab; i++) { - uint32_t len; - fin.read((char *) &len, sizeof(len)); - - word.resize(len); - fin.read((char *) word.data(), len); - - vocab.token_to_id[word] = i; - vocab.id_to_token[i] = word; - } - } - - // for the big tensors, we have the option to store the data in 16-bit floats - // in order to save memory and also to speed up the computation - const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32; - - auto & ctx = model.ctx; - - size_t ctx_size = 0; - - { - const auto & hparams = model.hparams; - - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - const int n_vocab = hparams.n_vocab; - - ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g - ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b - - ctx_size += n_vocab*n_embd*ggml_type_size(wtype); // wte - ctx_size += n_ctx*n_embd*ggml_type_size(GGML_TYPE_F32); // wpe - - ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g - ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b - - ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_g - ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_b - - ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_size(wtype)); // c_attn_attn_w - ctx_size += n_layer*( 3*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_attn_b - - ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w - ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_proj_b - - ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w - ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b - - ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w - ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b - - ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k - ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v - - ctx_size += (6 + 12*n_layer)*256; // object overhead - - printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); - } - - // create the ggml context - { - struct ggml_init_params params = { - .mem_size = ctx_size, - .mem_buffer = NULL, - }; - - model.ctx = ggml_init(params); - if (!model.ctx) { - fprintf(stderr, "%s: ggml_init() failed\n", __func__); - return false; - } - } - - // prepare memory for the weights - { - const auto & hparams = model.hparams; - - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - const int n_vocab = hparams.n_vocab; - - model.layers.resize(n_layer); - - model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); - model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx); - - // map by name - model.tensors["model/ln_f/g"] = model.ln_f_g; - model.tensors["model/ln_f/b"] = model.ln_f_b; - - model.tensors["model/wte"] = model.wte; - model.tensors["model/wpe"] = model.wpe; - - for (int i = 0; i < n_layer; ++i) { - auto & layer = model.layers[i]; - - layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, 3*n_embd, n_embd); - layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd); - - layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); - layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); - layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); - - layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); - layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - // map by name - model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g; - model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b; - - model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g; - model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b; - - model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w; - model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b; - - model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w; - model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b; - - model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w; - model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b; - - model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w_trans; - model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b; - } - } - - // key + value memory - { - const auto & hparams = model.hparams; - - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - - const int n_mem = n_layer*n_ctx; - const int n_elements = n_embd*n_mem; - - model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); - model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); - - const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); - - printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem); - } - - // load weights - { - size_t total_size = 0; - - while (true) { - int32_t n_dims; - int32_t length; - int32_t ftype; - - fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); - fin.read(reinterpret_cast(&length), sizeof(length)); - fin.read(reinterpret_cast(&ftype), sizeof(ftype)); - - if (fin.eof()) { - break; - } - - int32_t nelements = 1; - int32_t ne[2] = { 1, 1 }; - for (int i = 0; i < n_dims; ++i) { - fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); - nelements *= ne[i]; - } - - std::string name(length, 0); - fin.read(&name[0], length); - - if (model.tensors.find(name.data()) == model.tensors.end()) { - fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); - return false; - } - - auto tensor = model.tensors[name.data()]; - if (ggml_nelements(tensor) != nelements) { - fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); - return false; - } - - if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { - fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n", - __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]); - return false; - } - - const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t); - - if (nelements*bpe != ggml_nbytes(tensor)) { - fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", - __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); - return false; - } - - fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); - - //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); - total_size += ggml_nbytes(tensor); - } - - printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); - } - - fin.close(); - - return true; -} - -// evaluate the transformer -// -// - model: the model -// - n_threads: number of threads to use -// - n_past: the context size so far -// - embd_inp: the embeddings of the tokens in the context -// - embd_w: the predicted probabilities of the next token -// -bool gpt2_eval( - const gpt2_model & model, - const int n_threads, - const int n_past, - const std::vector & embd_inp, - std::vector & embd_w, - size_t & mem_per_token) { - const int N = embd_inp.size(); - - const auto & hparams = model.hparams; - - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - const int n_head = hparams.n_head; - const int n_vocab = hparams.n_vocab; - - static size_t buf_size = 256u*1024*1024; - static void * buf = malloc(buf_size); - - if (mem_per_token > 0 && mem_per_token*N > buf_size) { - const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead - //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); - - // reallocate - buf_size = buf_size_new; - buf = realloc(buf, buf_size); - if (buf == nullptr) { - fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); - return false; - } - } - - struct ggml_init_params params = { - .mem_size = buf_size, - .mem_buffer = buf, - }; - - struct ggml_context * ctx0 = ggml_init(params); - struct ggml_cgraph gf = { .n_threads = n_threads }; - - struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); - - struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - for (int i = 0; i < N; ++i) { - ((int32_t *) position->data)[i] = n_past + i; - } - - // wte + wpe - struct ggml_tensor * inpL = - ggml_add(ctx0, - ggml_get_rows(ctx0, model.wte, embd), - ggml_get_rows(ctx0, model.wpe, position)); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * cur; - - // norm - { - // [ 768, N] - cur = ggml_norm(ctx0, inpL); - - // cur = ln_1_g*cur + ln_1_b - // [ 768, N] - cur = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), - cur), - ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); - } - - // attn - // [2304, 768] - model.layers[il].c_attn_attn_w - // [2304, 1] - model.layers[il].c_attn_attn_b - // [ 768, N] - cur (in) - // [2304, N] - cur (out) - // - // cur = attn_w*cur + attn_b - // [2304, N] - { - cur = ggml_mul_mat(ctx0, - ggml_transpose(ctx0, model.layers[il].c_attn_attn_w), - cur); - - cur = ggml_add(ctx0, - ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur), - cur); - } - - // self-attention - { - struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd); - struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd); - struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd); - - // store key and value to memory - if (N >= 1) { - struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past)); - struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past)); - - ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); - ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); - } - - // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) - // [64, N, 12] - struct ggml_tensor * Q = - ggml_permute(ctx0, - ggml_cpy(ctx0, - Qcur, - ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)), - 0, 2, 1, 3); - - // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) - // [64, n_past + N, 12] - struct ggml_tensor * K = - ggml_permute(ctx0, - ggml_reshape_3d(ctx0, - ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd), - n_embd/n_head, n_head, n_past + N), - 0, 2, 1, 3); - - // GG: flash attention - //struct ggml_tensor * V = - // ggml_cpy(ctx0, - // ggml_permute(ctx0, - // ggml_reshape_3d(ctx0, - // ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd), - // n_embd/n_head, n_head, n_past + N), - // 1, 2, 0, 3), - // ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head)); - - //struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true); - - // K * Q - // [n_past + N, N, 12] - struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); - - // KQ_scaled = KQ / sqrt(n_embd/n_head) - // [n_past + N, N, 12] - struct ggml_tensor * KQ_scaled = - ggml_scale(ctx0, - KQ, - ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) - ); - - // KQ_masked = mask_past(KQ_scaled) - // [n_past + N, N, 12] - struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); - - // KQ = soft_max(KQ_masked) - // [n_past + N, N, 12] - struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); - - // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() - // [n_past + N, 64, 12] - struct ggml_tensor * V_trans = - ggml_permute(ctx0, - ggml_reshape_3d(ctx0, - ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd), - n_embd/n_head, n_head, n_past + N), - 1, 2, 0, 3); - - // KQV = transpose(V) * KQ_soft_max - // [64, N, 12] - struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); - - // KQV_merged = KQV.permute(0, 2, 1, 3) - // [64, 12, N] - struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); - - // cur = KQV_merged.contiguous().view(n_embd, N) - // [768, N] - cur = ggml_cpy(ctx0, - KQV_merged, - ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); - } - - // projection - // [ 768, 768] - model.layers[il].c_attn_proj_w - // [ 768, 1] - model.layers[il].c_attn_proj_b - // [ 768, N] - cur (in) - // [ 768, N] - cur (out) - // - // cur = proj_w*cur + proj_b - // [768, N] - { - cur = ggml_mul_mat(ctx0, - ggml_transpose(ctx0, model.layers[il].c_attn_proj_w), - cur); - - cur = ggml_add(ctx0, - ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), - cur); - } - - // add the input - cur = ggml_add(ctx0, cur, inpL); - - struct ggml_tensor * inpFF = cur; - - // feed-forward network - { - // norm - { - cur = ggml_norm(ctx0, inpFF); - - // cur = ln_2_g*cur + ln_2_b - // [ 768, N] - cur = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.layers[il].ln_2_g, cur), - cur), - ggml_repeat(ctx0, model.layers[il].ln_2_b, cur)); - } - - // fully connected - // [3072, 768] - model.layers[il].c_mlp_fc_w - // [3072, 1] - model.layers[il].c_mlp_fc_b - // [ 768, N] - cur (in) - // [3072, N] - cur (out) - // - // cur = fc_w*cur + fc_b - // [3072, N] - cur = ggml_mul_mat(ctx0, - ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w), - cur); - - cur = ggml_add(ctx0, - ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur), - cur); - - // GELU activation - // [3072, N] - cur = ggml_gelu(ctx0, cur); - - // projection - // [ 768, 3072] - model.layers[il].c_mlp_proj_w - // [ 768, 1] - model.layers[il].c_mlp_proj_b - // [3072, N] - cur (in) - // [ 768, N] - cur (out) - // - // cur = proj_w*cur + proj_b - // [768, N] - cur = ggml_mul_mat(ctx0, - model.layers[il].c_mlp_proj_w_trans, - cur); - - cur = ggml_add(ctx0, - ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur), - cur); - } - - // input for next layer - inpL = ggml_add(ctx0, cur, inpFF); - } - - // norm - { - // [ 768, N] - inpL = ggml_norm(ctx0, inpL); - - // inpL = ln_f_g*inpL + ln_f_b - // [ 768, N] - inpL = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.ln_f_g, inpL), - inpL), - ggml_repeat(ctx0, model.ln_f_b, inpL)); - } - - // inpL = WTE * inpL - // [ 768, 50257] - model.wte - // [ 768, N] - inpL - inpL = ggml_mul_mat(ctx0, model.wte, inpL); - - // logits -> probs - inpL = ggml_soft_max(ctx0, inpL); - - // run the computation - ggml_build_forward_expand(&gf, inpL); - ggml_graph_compute (ctx0, &gf); - - //if (n_past%100 == 0) { - // ggml_graph_print (&gf); - // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); - //} - - //embd_w.resize(n_vocab*N); - //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); - - // return result for just the last token - embd_w.resize(n_vocab); - memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); - - if (mem_per_token == 0) { - mem_per_token = ggml_used_mem(ctx0)/N; - } - //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); - - ggml_free(ctx0); - - return true; -} - -int main(int argc, char ** argv) { - const int64_t t_main_start_us = ggml_time_us(); - - gpt_params params; - params.model = "models/gpt-2-117M/ggml-model.bin"; - - if (gpt_params_parse(argc, argv, params) == false) { - return 1; - } - - if (params.seed < 0) { - params.seed = time(NULL); - } - - printf("%s: seed = %d\n", __func__, params.seed); - - std::mt19937 rng(params.seed); - if (params.prompt.empty()) { - params.prompt = gpt_random_prompt(rng); - } - - int64_t t_load_us = 0; - - gpt_vocab vocab; - gpt2_model model; - - // load the model - { - const int64_t t_start_us = ggml_time_us(); - - if (!gpt2_model_load(params.model, model, vocab)) { - fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); - return 1; - } - - t_load_us = ggml_time_us() - t_start_us; - } - - int n_past = 0; - - int64_t t_sample_us = 0; - int64_t t_predict_us = 0; - - std::vector embd_w; - - // tokenize the prompt - std::vector embd_inp = ::gpt_tokenize(vocab, params.prompt); - - params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size()); - - printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); - printf("\n"); - - // submit the input prompt token-by-token - // this reduces the memory usage during inference, at the cost of a bit of speed at the beginning - std::vector embd; - - // determine the required inference memory per token: - size_t mem_per_token = 0; - gpt2_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, embd_w, mem_per_token); - - for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) { - // predict - if (embd.size() > 0) { - const int64_t t_start_us = ggml_time_us(); - - if (!gpt2_eval(model, params.n_threads, n_past, embd, embd_w, mem_per_token)) { - printf("Failed to predict\n"); - return 1; - } - - t_predict_us += ggml_time_us() - t_start_us; - } - - n_past += embd.size(); - embd.clear(); - - if (i >= embd_inp.size()) { - // sample next token - const int top_k = params.top_k; - const float top_p = params.top_p; - const float temp = params.temp; - - const int n_vocab = model.hparams.n_vocab; - - gpt_vocab::id id = 0; - - { - const int64_t t_start_sample_us = ggml_time_us(); - - id = gpt_sample_top_k_top_p(vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, rng); - - t_sample_us += ggml_time_us() - t_start_sample_us; - } - - // add it to the context - embd.push_back(id); - } else { - // if here, it means we are still processing the input prompt - for (int k = i; k < embd_inp.size(); k++) { - embd.push_back(embd_inp[k]); - if (embd.size() > params.n_batch) { - break; - } - } - i += embd.size() - 1; - } - - // display text - for (auto id : embd) { - printf("%s", vocab.id_to_token[id].c_str()); - } - fflush(stdout); - - // end of text token - if (embd.back() == 50256) { - break; - } - } - - // report timing - { - const int64_t t_main_end_us = ggml_time_us(); - - printf("\n\n"); - printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token); - printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); - printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); - printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past); - printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); - } - - ggml_free(model.ctx); - - return 0; -}