Use Accelerate framework on Apple silicon

Huge performance improvement in the Encode (almost x2 on MacBook M1 Pro)

Also various extra optimizations:

- Multi-threaded NORM operator
- Faster GELU via F16 cast
pull/24/merge
Georgi Gerganov 2 years ago
parent 130b5c02d6
commit 72d967bce4

@ -8,6 +8,7 @@ UNAME_M := $(shell uname -m)
CFLAGS = -O3 -std=c11
CXXFLAGS = -O3 -std=c++11
LDFLAGS =
CFLAGS += -Wall -Wextra -Wno-unused-parameter -Wno-unused-function
CXXFLAGS += -Wall -Wextra -Wno-unused-parameter -Wno-unused-function
@ -37,7 +38,11 @@ ifeq ($(UNAME_M),amd64)
CFLAGS += -mavx -mavx2 -mfma -mf16c
endif
ifneq ($(filter arm%,$(UNAME_M)),)
# Mac M1
# Mac M1 - include Accelerate framework
ifeq ($(UNAME_S),Darwin)
CFLAGS += -DGGML_USE_ACCELERATE
LDFLAGS += -framework Accelerate
endif
endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
endif
@ -59,7 +64,7 @@ endif
#
main: main.cpp ggml.o whisper.o
$(CXX) $(CXXFLAGS) main.cpp whisper.o ggml.o -o main
$(CXX) $(CXXFLAGS) main.cpp whisper.o ggml.o -o main $(LDFLAGS)
./main -h
ggml.o: ggml.c ggml.h

@ -6,7 +6,8 @@
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
- Plain C/C++ implementation without dependencies
- ARM_NEON and AVX intrinsics support
- Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
- AVX intrinsics support for x86 architectures
- Mixed F16 / F32 precision
- Low memory usage (Flash Attention + Flash Forward)
- Zero memory allocations at runtime
@ -224,7 +225,7 @@ https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a
The `stream` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
```bash
# Install SDL2 on Linux
# Install SDL2 on Linux
sudo apt-get install libsdl2-dev
# Install SDL2 on Mac OS
@ -240,6 +241,10 @@ make stream
- Simple usage is demonstrated in [main.cpp](main.cpp)
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](stream.cpp)
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
instrisics or CBLAS Accelerate framwork routines are used. The latter are especially effective for bigger sizes since
the framwork utilizes the special-purpose AMX coprocessor available in modern Apple products.
## Limitations
- Very basic greedy sampling scheme - always pick up the top token. You can implement your own strategy
@ -250,11 +255,12 @@ make stream
| Model | Disk | Mem |
| --- | --- | --- |
| tiny | 75 MB | ~240 MB |
| base | 142 MB | ~380 MB |
| small | 466 MB | ~970 MB |
| medium | 1.5 GB | ~2.5 GB |
| large | 2.9 GB | ~4.6 GB |
| tiny | 75 MB | ~280 MB |
| base | 142 MB | ~430 MB |
| small | 466 MB | ~1.0 GB |
| medium | 1.5 GB | ~2.6 GB |
| large | 2.9 GB | ~4.7 GB |
## ggml format

293
ggml.c

@ -716,19 +716,28 @@ inline static float ggml_gelu_f32(float x) {
return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
}
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
const uint16_t * i16 = (const uint16_t *) x;
for (int i = 0; i < n; ++i) {
y[i] = ggml_gelu_f32(x[i]);
y[i] = table_gelu_f16[i16[i]];
}
}
inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
const uint16_t * i16 = (const uint16_t *) x;
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
uint16_t t;
for (int i = 0; i < n; ++i) {
y[i] = table_gelu_f16[i16[i]];
ggml_fp16_t fp16 = ggml_fp32_to_fp16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = table_gelu_f16[t];
}
}
//inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
// for (int i = 0; i < n; ++i) {
// y[i] = ggml_gelu_f32(x[i]);
// }
//}
inline static void ggml_vec_sum_f32 (const int n, float * s, const float * x) { ggml_float sum = 0.0; for (int i = 0; i < n; ++i) sum += x[i]; *s += sum; }
inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
@ -2867,13 +2876,15 @@ void ggml_compute_forward_add_f32(
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
@ -2890,7 +2901,7 @@ void ggml_compute_forward_add_f32(
GGML_ASSERT(nb00 == sizeof(float));
if (nb10 == sizeof(float)) {
for (int j = 0; j < n; j++) {
for (int j = ith; j < n; j += nth) {
ggml_vec_add_f32(nc,
(float *) ((char *) dst->data + j*nb1),
(float *) ((char *) src0->data + j*nb01),
@ -2898,7 +2909,7 @@ void ggml_compute_forward_add_f32(
}
} else {
// src1 is not contiguous
for (int j = 0; j < n; j++) {
for (int j = ith; j < n; j += nth) {
float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
for (int i = 0; i < nc; i++) {
@ -3669,14 +3680,16 @@ void ggml_compute_forward_norm_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
assert(src0->nb[0] == sizeof(float));
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
@ -3696,7 +3709,7 @@ void ggml_compute_forward_norm_f32(
// TODO: optimize
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
for (int i01 = 0; i01 < ne01; i01++) {
for (int i01 = ith; i01 < ne01; i01 += nth) {
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float mean = 0.0;
@ -3745,6 +3758,28 @@ void ggml_compute_forward_norm(
// ggml_compute_forward_mul_mat
// helper function to determine if it is better to use BLAS or not
// for large matrices, BLAS is faster
bool ggml_compute_forward_mul_mat_use_blas(
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
UNUSED(src0);
const int ne10 = src1->ne[0];
const int ne0 = dst->ne[0];
const int ne1 = dst->ne[1];
// TODO: find the optimal values for these
if (ggml_is_contiguous(src1) && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) {
//printf("BLAS: %d %d %d\n", ne0, ne1, ne10);
return true;
}
return false;
}
void ggml_compute_forward_mul_mat_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
@ -3812,6 +3847,47 @@ void ggml_compute_forward_mul_mat_f32(
// nb00 < nb01 - src0 is transposed
// compute by src0 columns
//#ifdef GGML_USE_ACCELERATE
// if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
// GGML_ASSERT(ggml_is_contiguous(src0));
// GGML_ASSERT(nb10 == sizeof(float));
//
// if (params->ith != 0) return;
//
// if (params->type == GGML_TASK_INIT) {
// return;
// }
//
// if (params->type == GGML_TASK_FINALIZE) {
// return;
// }
//
// float * const wdata = params->wdata;
//
// for (int i03 = 0; i03 < ne03; i03++) {
// for (int i02 = 0; i02 < ne02; i02++) {
// const float * x = (float *) (src0->data);
// const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
//
// float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
//
// // zT = y * xT
// {
// cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
// ne11, ne01, ne10,
// 1.0f, y, ne10,
// x, ne10,
// 0.0f, d, ne01);
// }
// }
// }
//
// //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
//
// return;
// }
//#endif
if (params->type == GGML_TASK_INIT) {
if (nb01 >= nb00) {
return;
@ -3848,78 +3924,6 @@ void ggml_compute_forward_mul_mat_f32(
return;
}
//#ifdef GGML_USE_ACCELERATE
// // try to use BLAS
//
// if (nb01 >= nb00 && ne0 > 1024 && ne1 > 1024) {
// if (params->ith != 0) return;
// printf("XXXXXXXX\n");
//
// GGML_ASSERT(ggml_is_contiguous(src0));
// GGML_ASSERT(ggml_is_contiguous(src1));
//
// printf("ne00 = %d, ne01 = %d, ne02 = %d, ne03 = %d\n", ne00, ne01, ne02, ne03);
// printf("ne10 = %d, ne11 = %d, ne12 = %d, ne13 = %d\n", ne10, ne11, ne12, ne13);
// printf("ne0 = %d, ne1 = %d, ne2 = %d, ne3 = %d\n", ne0, ne1, ne2, ne3);
//
// printf("nb00 = %d, nb01 = %d, nb02 = %d, nb03 = %d\n", nb00, nb01, nb02, nb03);
// printf("nb10 = %d, nb11 = %d, nb12 = %d, nb13 = %d\n", nb10, nb11, nb12, nb13);
// printf("nb0 = %d, nb1 = %d, nb2 = %d, nb3 = %d\n", nb0, nb1, nb2, nb3);
//
// float * const wdata = params->wdata;
//
// int64_t tsum = 0.0;
// for (int i03 = 0; i03 < ne03; i03++) {
// for (int i02 = 0; i02 < ne02; i02++) {
// const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
// const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
// float * z = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
//
// // transpose src1
// for (int j = 0; j < ne11; ++j) {
// for (int i = 0; i < ne10; ++i) {
// wdata[i*ne11 + j] = y[j*ne10 + i];
// }
// }
//
// {
// const int64_t tt0 = ggml_time_us();
// cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
// 1500, 1500, 64,
// 1.0, x, 64,
// wdata, 1500,
// 0.0, z, 1500);
// const int64_t tt1 = ggml_time_us();
// tsum += tt1 - tt0;
// }
//
// // transpose z
// for (int j = 0; j < ne1; ++j) {
// for (int i = 0; i < ne0; ++i) {
// wdata[i*ne1 + j] = z[j*ne0 + i];
// }
// }
//
// memcpy(z, wdata, ne0*ne1*sizeof(float));
//
// //cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
// // ne0, ne1, 64,
// // 1.0f,
// // x, ne00,
// // y, ne11,
// // 0.0f,
// // z, 1500);
// }
// }
// printf("time = %f ms\n", tsum/1000.0);
// return;
// } else {
// //cblas_sgemv(CblasRowMajor, CblasTrans, ne00, ne01, 1.0, src0->data, ne01, src1->data, 1, 0.0, dst->data, 1);
// }
//
//#endif
if (nb01 >= nb00) {
// TODO: do not support transposed src1
assert(nb10 == sizeof(float));
@ -4064,24 +4068,24 @@ void ggml_compute_forward_mul_mat_f16_f32(
const int ith = params->ith;
const int nth = params->nth;
assert(ne02 == ne12);
assert(ne03 == ne13);
assert(ne2 == ne12);
assert(ne3 == ne13);
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne03 == ne13);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// TODO: we don't support permuted src0
assert(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
// dst cannot be transposed or permuted
assert(nb0 == sizeof(float));
assert(nb0 <= nb1);
assert(nb1 <= nb2);
assert(nb2 <= nb3);
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
assert(ne0 == ne01);
assert(ne1 == ne11);
assert(ne2 == ne02);
assert(ne3 == ne03);
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne3 == ne03);
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
@ -4089,6 +4093,73 @@ void ggml_compute_forward_mul_mat_f16_f32(
// nb00 < nb01 - src0 is transposed
// compute by src0 columns
#ifdef GGML_USE_ACCELERATE
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
GGML_ASSERT(nb10 == sizeof(float));
if (params->ith != 0) return;
if (params->type == GGML_TASK_INIT) {
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
float * const wdata = params->wdata;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
{
int id = 0;
for (int i01 = 0; i01 < ne01; ++i01) {
for (int i00 = 0; i00 < ne00; ++i00) {
wdata[id++] = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
}
}
}
const float * x = wdata;
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
// float * z = wdata + ne00*ne01;
// z = x * yT
//{
// cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
// ne01, ne11, ne00,
// 1.0f, x, ne00,
// y, ne00,
// 0.0f, z, ne11);
//}
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
// transpose z
//for (int j = 0; j < ne11; ++j) {
// for (int i = 0; i < ne01; ++i) {
// d[j*ne01 + i] = z[i*ne11 + j];
// }
//}
// zT = y * xT
{
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne10,
0.0f, d, ne01);
}
}
}
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return;
}
#endif
if (params->type == GGML_TASK_INIT) {
if (nb01 >= nb00) {
ggml_fp16_t * const wdata = params->wdata;
@ -6534,7 +6605,13 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
switch (node->op) {
case GGML_OP_DUP:
{
node->n_tasks = 1;
} break;
case GGML_OP_ADD:
{
node->n_tasks = 1;
} break;
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
@ -6553,11 +6630,11 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
} break;
case GGML_OP_GELU:
{
node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
node->n_tasks = n_threads;
} break;
case GGML_OP_NORM:
{
node->n_tasks = 1;
node->n_tasks = n_threads;
} break;
case GGML_OP_MUL_MAT:
{
@ -6572,7 +6649,15 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
} else {
if (node->src0->type == GGML_TYPE_F16 &&
node->src1->type == GGML_TYPE_F32) {
#ifdef GGML_USE_ACCELERATE
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
cur = sizeof(float)*(node->src0->ne[0]*node->src0->ne[1]);
} else {
cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
}
#else
cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
#endif
} else if (node->src0->type == GGML_TYPE_F32 &&
node->src1->type == GGML_TYPE_F32) {
cur = 0;
@ -6585,7 +6670,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
} break;
case GGML_OP_SCALE:
{
node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
node->n_tasks = n_threads;
} break;
case GGML_OP_CPY:
case GGML_OP_RESHAPE:
@ -6599,7 +6684,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
} break;
case GGML_OP_SOFT_MAX:
{
node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
node->n_tasks = n_threads;
} break;
case GGML_OP_ROPE:
{
@ -6714,7 +6799,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
struct ggml_compute_params params = {
/*.type =*/ GGML_TASK_INIT,
/*.ith =*/ 0,
/*.nth =*/ n_threads,
/*.nth =*/ node->n_tasks,
/*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
/*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
};
@ -6898,9 +6983,9 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) {
perf_total_per_op_us[node->op] += node->perf_time_us;
GGML_PRINT(" - %3d: [ %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
i,
node->ne[0], node->ne[1],
node->ne[0], node->ne[1], node->ne[2],
GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
(double) node->perf_cycles / (double) ggml_cycles_per_ms(),
(double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,

@ -21,7 +21,7 @@ std::string to_timestamp(int64_t t) {
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d:%02d.%03d", (int) hr, (int) min, (int) sec, (int) msec);

@ -15,7 +15,7 @@
#include <vector>
#define USE_FLASH_ATTN
#define USE_FLASH_FF
//#define USE_FLASH_FF
// available whisper models
enum e_model {
@ -148,11 +148,11 @@ static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
};
static const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
{ MODEL_TINY, 64ull*MB },
{ MODEL_BASE, 84ull*MB },
{ MODEL_SMALL, 128ull*MB },
{ MODEL_MEDIUM, 172ull*MB },
{ MODEL_LARGE, 216ull*MB },
{ MODEL_TINY, 104ull*MB },
{ MODEL_BASE, 138ull*MB },
{ MODEL_SMALL, 208ull*MB },
{ MODEL_MEDIUM, 280ull*MB },
{ MODEL_LARGE, 354ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_DECODE = {

Loading…
Cancel
Save