From 6b77124e015a6e9f35586fafe82a62eb6c4f789e Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 4 Oct 2022 20:35:01 +0300 Subject: [PATCH] Initial C-style interface for whisper.cpp --- Makefile | 9 +- main.cpp | 2352 +++------------------------------------------------ stream.cpp | 2347 +++----------------------------------------------- whisper.cpp | 2221 ++++++++++++++++++++++++++++++++++++++++++++++++ whisper.h | 133 +++ 5 files changed, 2622 insertions(+), 4440 deletions(-) create mode 100644 whisper.cpp create mode 100644 whisper.h diff --git a/Makefile b/Makefile index 14a7528..4e1315f 100644 --- a/Makefile +++ b/Makefile @@ -1,17 +1,20 @@ CC_SDL=`sdl2-config --cflags --libs` -main: ggml.o main.o - g++ -pthread -o main ggml.o main.o +main: ggml.o whisper.o main.o + g++ -pthread -o main ggml.o whisper.o main.o ./main -h ggml.o: ggml.c ggml.h gcc -pthread -O3 -mavx -mavx2 -mfma -mf16c -c ggml.c +whisper.o: whisper.cpp whisper.h + gcc -pthread -O3 -std=c++11 -c whisper.cpp + main.o: main.cpp ggml.h g++ -pthread -O3 -std=c++11 -c main.cpp stream: stream.cpp - g++ -pthread -O3 -std=c++11 -o stream stream.cpp ggml.o $(CC_SDL) + g++ -pthread -O3 -std=c++11 -o stream stream.cpp ggml.o whisper.o $(CC_SDL) # clean up the directory clean: diff --git a/main.cpp b/main.cpp index b39f360..cc36322 100644 --- a/main.cpp +++ b/main.cpp @@ -1,2123 +1,117 @@ -#include "ggml.h" +#include "whisper.h" -#define USE_FLASH_ATTN -#define USE_FLASH_FF - -// third-party utilities -// use your favorite implementations -#define DR_WAV_IMPLEMENTATION -#include "dr_wav.h" - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -// available whisper models -enum e_model { - MODEL_UNKNOWN, - MODEL_TINY, - MODEL_BASE, - MODEL_SMALL, - MODEL_MEDIUM, - MODEL_LARGE, -}; - -const std::map> g_lang = { - { "en", { 0, "english", } }, - { "zh", { 1, "chinese", } }, - { "de", { 2, "german", } }, - { "es", { 3, "spanish", } }, - { "ru", { 4, "russian", } }, - { "ko", { 5, "korean", } }, - { "fr", { 6, "french", } }, - { "ja", { 7, "japanese", } }, - { "pt", { 8, "portuguese", } }, - { "tr", { 9, "turkish", } }, - { "pl", { 10, "polish", } }, - { "ca", { 11, "catalan", } }, - { "nl", { 12, "dutch", } }, - { "ar", { 13, "arabic", } }, - { "sv", { 14, "swedish", } }, - { "it", { 15, "italian", } }, - { "id", { 16, "indonesian", } }, - { "hi", { 17, "hindi", } }, - { "fi", { 18, "finnish", } }, - { "vi", { 19, "vietnamese", } }, - { "iw", { 20, "hebrew", } }, - { "uk", { 21, "ukrainian", } }, - { "el", { 22, "greek", } }, - { "ms", { 23, "malay", } }, - { "cs", { 24, "czech", } }, - { "ro", { 25, "romanian", } }, - { "da", { 26, "danish", } }, - { "hu", { 27, "hungarian", } }, - { "ta", { 28, "tamil", } }, - { "no", { 29, "norwegian", } }, - { "th", { 30, "thai", } }, - { "ur", { 31, "urdu", } }, - { "hr", { 32, "croatian", } }, - { "bg", { 33, "bulgarian", } }, - { "lt", { 34, "lithuanian", } }, - { "la", { 35, "latin", } }, - { "mi", { 36, "maori", } }, - { "ml", { 37, "malayalam", } }, - { "cy", { 38, "welsh", } }, - { "sk", { 39, "slovak", } }, - { "te", { 40, "telugu", } }, - { "fa", { 41, "persian", } }, - { "lv", { 42, "latvian", } }, - { "bn", { 43, "bengali", } }, - { "sr", { 44, "serbian", } }, - { "az", { 45, "azerbaijani", } }, - { "sl", { 46, "slovenian", } }, - { "kn", { 47, "kannada", } }, - { "et", { 48, "estonian", } }, - { "mk", { 49, "macedonian", } }, - { "br", { 50, "breton", } }, - { "eu", { 51, "basque", } }, - { "is", { 52, "icelandic", } }, - { "hy", { 53, "armenian", } }, - { "ne", { 54, "nepali", } }, - { "mn", { 55, "mongolian", } }, - { "bs", { 56, "bosnian", } }, - { "kk", { 57, "kazakh", } }, - { "sq", { 58, "albanian", } }, - { "sw", { 59, "swahili", } }, - { "gl", { 60, "galician", } }, - { "mr", { 61, "marathi", } }, - { "pa", { 62, "punjabi", } }, - { "si", { 63, "sinhala", } }, - { "km", { 64, "khmer", } }, - { "sn", { 65, "shona", } }, - { "yo", { 66, "yoruba", } }, - { "so", { 67, "somali", } }, - { "af", { 68, "afrikaans", } }, - { "oc", { 69, "occitan", } }, - { "ka", { 70, "georgian", } }, - { "be", { 71, "belarusian", } }, - { "tg", { 72, "tajik", } }, - { "sd", { 73, "sindhi", } }, - { "gu", { 74, "gujarati", } }, - { "am", { 75, "amharic", } }, - { "yi", { 76, "yiddish", } }, - { "lo", { 77, "lao", } }, - { "uz", { 78, "uzbek", } }, - { "fo", { 79, "faroese", } }, - { "ht", { 80, "haitian creole", } }, - { "ps", { 81, "pashto", } }, - { "tk", { 82, "turkmen", } }, - { "nn", { 83, "nynorsk", } }, - { "mt", { 84, "maltese", } }, - { "sa", { 85, "sanskrit", } }, - { "lb", { 86, "luxembourgish", } }, - { "my", { 87, "myanmar", } }, - { "bo", { 88, "tibetan", } }, - { "tl", { 89, "tagalog", } }, - { "mg", { 90, "malagasy", } }, - { "as", { 91, "assamese", } }, - { "tt", { 92, "tatar", } }, - { "haw", { 93, "hawaiian", } }, - { "ln", { 94, "lingala", } }, - { "ha", { 95, "hausa", } }, - { "ba", { 96, "bashkir", } }, - { "jw", { 97, "javanese", } }, - { "su", { 98, "sundanese", } }, -}; - -const size_t MB = 1024*1024; - -const std::map MEM_REQ_MODEL = { - { MODEL_TINY, 86ull*MB }, - { MODEL_BASE, 165ull*MB }, - { MODEL_SMALL, 540ull*MB }, - { MODEL_MEDIUM, 1650ull*MB }, - { MODEL_LARGE, 3260ull*MB }, -}; - -const std::map MEM_REQ_ENCODE = { - { MODEL_TINY, 80ull*MB }, - { MODEL_BASE, 128ull*MB }, - { MODEL_SMALL, 300ull*MB }, - { MODEL_MEDIUM, 680ull*MB }, - { MODEL_LARGE, 1100ull*MB }, -}; - -const std::map MEM_REQ_ENCODE_LAYER = { - { MODEL_TINY, 64ull*MB }, - { MODEL_BASE, 84ull*MB }, - { MODEL_SMALL, 128ull*MB }, - { MODEL_MEDIUM, 172ull*MB }, - { MODEL_LARGE, 216ull*MB }, -}; - -const std::map MEM_REQ_DECODE = { - { MODEL_TINY, 94ull*MB }, - { MODEL_BASE, 96ull*MB }, - { MODEL_SMALL, 98ull*MB }, - { MODEL_MEDIUM, 100ull*MB }, - { MODEL_LARGE, 102ull*MB }, -}; - -const std::map MEM_REQ_DECODE_LAYER = { - { MODEL_TINY, 32ull*MB }, - { MODEL_BASE, 44ull*MB }, - { MODEL_SMALL, 64ull*MB }, - { MODEL_MEDIUM, 84ull*MB }, - { MODEL_LARGE, 110ull*MB }, -}; - -// the memory buffers used to store the model in memory and perform the inference computations -std::vector g_buf_model; -std::vector g_buf_compute; -std::vector g_buf_compute_layer; - -const int SAMPLE_RATE = 16000; -const int N_FFT = 400; -const int N_MEL = 80; -const int HOP_LENGTH = 160; -const int CHUNK_SIZE = 30; // seconds - -struct whisper_mel { - int n_len; - int n_mel; - - std::vector data; -}; - -struct whisper_filters { - int32_t n_mel; - int32_t n_fft; - - std::vector data; -}; - -struct whisper_vocab { - using id = int32_t; - using token = std::string; - - int n_vocab = 51864; - - std::map token_to_id; - std::map id_to_token; - - id token_eot = 50256; - id token_sot = 50257; - id token_prev = 50360; - id token_solm = 50361; // ?? - id token_not = 50362; // no timestamps - id token_beg = 50363; - - // available tasks - const id token_translate = 50358; - const id token_transcribe = 50359; - - bool is_multilingual() const { - return n_vocab == 51865; - } -}; - -struct whisper_result { - whisper_vocab::id id; - int64_t t; -}; - -// command-line parameters -struct whisper_params { - int32_t seed = -1; // RNG seed, not used currently - int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); - - bool verbose = false; - bool translate = false; - bool print_special_tokens = false; - bool no_timestamps = false; - - std::string language = "en"; - std::string model = "models/ggml-base.en.bin"; - std::string fname_inp = "samples/jfk.wav"; -}; - -void whisper_print_usage(int argc, char ** argv, const whisper_params & params); - -bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { - for (int i = 1; i < argc; i++) { - std::string arg = argv[i]; - - if (arg == "-s" || arg == "--seed") { - params.seed = std::stoi(argv[++i]); - } else if (arg == "-t" || arg == "--threads") { - params.n_threads = std::stoi(argv[++i]); - } else if (arg == "-v" || arg == "--verbose") { - params.verbose = true; - } else if (arg == "--translate") { - params.translate = true; - } else if (arg == "-l" || arg == "--language") { - params.language = argv[++i]; - if (g_lang.find(params.language) == g_lang.end()) { - fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); - whisper_print_usage(argc, argv, params); - exit(0); - } - } else if (arg == "-ps" || arg == "--print_special") { - params.print_special_tokens = true; - } else if (arg == "-nt" || arg == "--no_timestamps") { - params.no_timestamps = true; - } else if (arg == "-m" || arg == "--model") { - params.model = argv[++i]; - } else if (arg == "-f" || arg == "--file") { - params.fname_inp = argv[++i]; - } else if (arg == "-h" || arg == "--help") { - whisper_print_usage(argc, argv, params); - exit(0); - } else { - fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); - whisper_print_usage(argc, argv, params); - exit(0); - } - } - - return true; -} - -void whisper_print_usage(int argc, char ** argv, const whisper_params & params) { - fprintf(stderr, "\n"); - fprintf(stderr, "usage: %s [options]\n", argv[0]); - fprintf(stderr, "\n"); - fprintf(stderr, "options:\n"); - fprintf(stderr, " -h, --help show this help message and exit\n"); - fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); - fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); - fprintf(stderr, " -v, --verbose verbose output\n"); - fprintf(stderr, " --translate translate from source language to english\n"); - fprintf(stderr, " -ps, --print_special print special tokens\n"); - fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n"); - fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str()); - fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str()); - fprintf(stderr, " -f FNAME, --file FNAME input WAV file path (default: %s)\n", params.fname_inp.c_str()); - fprintf(stderr, "\n"); -} - - -// medium -// hparams: { -// 'n_mels': 80, -// 'n_vocab': 51864, -// 'n_audio_ctx': 1500, -// 'n_audio_state': 1024, -// 'n_audio_head': 16, -// 'n_audio_layer': 24, -// 'n_text_ctx': 448, -// 'n_text_state': 1024, -// 'n_text_head': 16, -// 'n_text_layer': 24 -// } -// -// default hparams (Whisper tiny) -struct whisper_hparams { - int32_t n_vocab = 51864; - int32_t n_audio_ctx = 1500; - int32_t n_audio_state = 384; - int32_t n_audio_head = 6; - int32_t n_audio_layer = 4; - int32_t n_text_ctx = 448; - int32_t n_text_state = 384; - int32_t n_text_head = 6; - int32_t n_text_layer = 4; - int32_t n_mels = 80; - int32_t f16 = 1; -}; - -// audio encoding layer -struct whisper_layer_encoder { - // encoder.blocks.*.attn_ln - struct ggml_tensor * attn_ln_0_w; - struct ggml_tensor * attn_ln_0_b; - - // encoder.blocks.*.attn.out - struct ggml_tensor * attn_ln_1_w; - struct ggml_tensor * attn_ln_1_b; - - // encoder.blocks.*.attn.query - struct ggml_tensor * attn_q_w; - struct ggml_tensor * attn_q_b; - - // encoder.blocks.*.attn.key - struct ggml_tensor * attn_k_w; - - // encoder.blocks.*.attn.value - struct ggml_tensor * attn_v_w; - struct ggml_tensor * attn_v_b; - - // encoder.blocks.*.mlp_ln - struct ggml_tensor * mlp_ln_w; - struct ggml_tensor * mlp_ln_b; - - // encoder.blocks.*.mlp.0 - struct ggml_tensor * mlp_0_w; - struct ggml_tensor * mlp_0_b; - - // encoder.blocks.*.mlp.2 - struct ggml_tensor * mlp_1_w; - struct ggml_tensor * mlp_1_b; -}; - -// token decoding layer -struct whisper_layer_decoder { - // decoder.blocks.*.attn_ln - struct ggml_tensor * attn_ln_0_w; - struct ggml_tensor * attn_ln_0_b; - - // decoder.blocks.*.attn.out - struct ggml_tensor * attn_ln_1_w; - struct ggml_tensor * attn_ln_1_b; - - // decoder.blocks.*.attn.query - struct ggml_tensor * attn_q_w; - struct ggml_tensor * attn_q_b; - - // decoder.blocks.*.attn.key - struct ggml_tensor * attn_k_w; - - // decoder.blocks.*.attn.value - struct ggml_tensor * attn_v_w; - struct ggml_tensor * attn_v_b; - - // decoder.blocks.*.cross_attn_ln - struct ggml_tensor * cross_attn_ln_0_w; - struct ggml_tensor * cross_attn_ln_0_b; - - // decoder.blocks.*.cross_attn.out - struct ggml_tensor * cross_attn_ln_1_w; - struct ggml_tensor * cross_attn_ln_1_b; - - // decoder.blocks.*.cross_attn.query - struct ggml_tensor * cross_attn_q_w; - struct ggml_tensor * cross_attn_q_b; - - // decoder.blocks.*.cross_attn.key - struct ggml_tensor * cross_attn_k_w; - - // decoder.blocks.*.cross_attn.value - struct ggml_tensor * cross_attn_v_w; - struct ggml_tensor * cross_attn_v_b; - - // decoder.blocks.*.mlp_ln - struct ggml_tensor * mlp_ln_w; - struct ggml_tensor * mlp_ln_b; - - // decoder.blocks.*.mlp.0 - struct ggml_tensor * mlp_0_w; - struct ggml_tensor * mlp_0_b; - - // decoder.blocks.*.mlp.2 - struct ggml_tensor * mlp_1_w; - struct ggml_tensor * mlp_1_b; -}; - -struct whisper_model { - e_model type = MODEL_UNKNOWN; - - whisper_hparams hparams; - whisper_filters filters; - - // encoder.positional_embedding - struct ggml_tensor * e_pe; - - // encoder.conv1 - struct ggml_tensor * e_conv_1_w; - struct ggml_tensor * e_conv_1_b; - - // encoder.conv2 - struct ggml_tensor * e_conv_2_w; - struct ggml_tensor * e_conv_2_b; - - // encoder.ln_post - struct ggml_tensor * e_ln_w; - struct ggml_tensor * e_ln_b; - - // decoder.positional_embedding - struct ggml_tensor * d_pe; // DD - - // decoder.token_embedding - struct ggml_tensor * d_te; // DD - - // decoder.ln - struct ggml_tensor * d_ln_w; // DD - struct ggml_tensor * d_ln_b; // DD - - std::vector layers_encoder; - std::vector layers_decoder; - - // key + value memory - struct ggml_tensor * memory_k; - struct ggml_tensor * memory_v; - - struct ggml_tensor * memory_cross_k; - struct ggml_tensor * memory_cross_v; - - // - struct ggml_context * ctx; - std::map tensors; -}; - -// load the model from a ggml file -// -// file format: -// -// - hparams -// - pre-computed mel filters -// - vocab -// - weights -// -// see the convert-pt-to-ggml.py script for details -// -bool whisper_model_load(const std::string & fname, whisper_model & model, whisper_vocab & vocab) { - printf("%s: loading model from '%s'\n", __func__, fname.c_str()); - - auto fin = std::ifstream(fname, std::ios::binary); - if (!fin) { - fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); - return false; - } - - // verify magic - { - uint32_t magic; - fin.read((char *) &magic, sizeof(magic)); - if (magic != 0x67676d6c) { - fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); - return false; - } - } - - //load hparams - { - auto & hparams = model.hparams; - - fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); - fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx)); - fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state)); - fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head)); - fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer)); - fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx)); - fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state)); - fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head)); - fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer)); - fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels)); - fin.read((char *) &hparams.f16, sizeof(hparams.f16)); - - assert(hparams.n_text_state == hparams.n_audio_state); - - if (hparams.n_audio_layer == 4) { - model.type = e_model::MODEL_TINY; - } - - if (hparams.n_audio_layer == 6) { - model.type = e_model::MODEL_BASE; - } - - if (hparams.n_audio_layer == 12) { - model.type = e_model::MODEL_SMALL; - } - - if (hparams.n_audio_layer == 24) { - model.type = e_model::MODEL_MEDIUM; - } - - if (hparams.n_audio_layer == 32) { - model.type = e_model::MODEL_LARGE; - } - - printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); - printf("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx); - printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state); - printf("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head); - printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer); - printf("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx); - printf("%s: n_text_state = %d\n", __func__, hparams.n_text_state); - printf("%s: n_text_head = %d\n", __func__, hparams.n_text_head); - printf("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer); - printf("%s: n_mels = %d\n", __func__, hparams.n_mels); - printf("%s: f16 = %d\n", __func__, hparams.f16); - printf("%s: type = %d\n", __func__, model.type); - - g_buf_model.resize(MEM_REQ_MODEL.at(model.type)); - g_buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type))); - g_buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type))); - - // this is the total memory required to run the inference - const size_t mem_required = - g_buf_model.size() + - g_buf_compute.size() + - g_buf_compute_layer.size(); - - printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); - } - - // load mel filters - { - auto & filters = model.filters; - - fin.read((char *) &filters.n_mel, sizeof(filters.n_mel)); - fin.read((char *) &filters.n_fft, sizeof(filters.n_fft)); - - filters.data.resize(filters.n_mel * filters.n_fft); - fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float)); - } - - // load vocab - { - int32_t n_vocab = 0; - fin.read((char *) &n_vocab, sizeof(n_vocab)); - - //if (n_vocab != model.hparams.n_vocab) { - // fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", - // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); - // return false; - //} - - std::string word; - for (int i = 0; i < n_vocab; i++) { - uint32_t len; - fin.read((char *) &len, sizeof(len)); - - word.resize(len); - fin.read((char *) word.data(), len); - - vocab.token_to_id[word] = i; - vocab.id_to_token[i] = word; - - //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); - } - - vocab.n_vocab = model.hparams.n_vocab; - if (vocab.is_multilingual()) { - vocab.token_eot++; - vocab.token_sot++; - vocab.token_prev++; - vocab.token_solm++; - vocab.token_not++; - vocab.token_beg++; - } - - if (n_vocab < model.hparams.n_vocab) { - printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab); - for (int i = n_vocab; i < model.hparams.n_vocab; i++) { - if (i > vocab.token_beg) { - word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]"; - } else if (i == vocab.token_eot) { - word = "[_EOT_]"; - } else if (i == vocab.token_sot) { - word = "[_SOT_]"; - } else if (i == vocab.token_prev) { - word = "[_PREV_]"; - } else if (i == vocab.token_not) { - word = "[_NOT_]"; - } else if (i == vocab.token_beg) { - word = "[_BEG_]"; - } else { - word = "[_extra_token_" + std::to_string(i) + "]"; - } - vocab.token_to_id[word] = i; - vocab.id_to_token[i] = word; - } - } - } - - // for the big tensors, we have the option to store the data in 16-bit floats - // in order to save memory and also to speed up the computation - const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32; - - auto & ctx = model.ctx; - - size_t ctx_size = 0; - - { - const auto & hparams = model.hparams; - - const int n_vocab = hparams.n_vocab; - - const int n_audio_ctx = hparams.n_audio_ctx; - const int n_audio_state = hparams.n_audio_state; - const int n_audio_layer = hparams.n_audio_layer; - - const int n_text_ctx = hparams.n_text_ctx; - const int n_text_state = hparams.n_text_state; - const int n_text_layer = hparams.n_text_layer; - - const int n_mels = hparams.n_mels; - - // encoder - { - // TODO: F16 .. maybe not? - ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe; - - ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w - ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b - - ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w - ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b - - ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w; - ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b; - } - - // decoder - { - // TODO: F16 .. maybe not? - ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe; - - ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te; - - ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w; - ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b; - } - - // encoder layers - { - ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w - ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b - - ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w - ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b - - ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w - ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b - - ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w - ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b - - ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w - ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b - - ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w - - ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w - ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b - - ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w - ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b - } - - // decoder layers - { - ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w - ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b - - ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w - ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b - - ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b - - ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w - ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b - // - ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w - ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b - } - - ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k - ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v - - ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k - ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v - - ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead - - printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); - } - - // create the ggml context - { - struct ggml_init_params params = { - .mem_size = g_buf_model.size(), - .mem_buffer = g_buf_model.data(), - }; - - model.ctx = ggml_init(params); - if (!model.ctx) { - fprintf(stderr, "%s: ggml_init() failed\n", __func__); - return false; - } - } - - // prepare memory for the weights - { - const auto & hparams = model.hparams; - - const int n_vocab = hparams.n_vocab; - - const int n_audio_ctx = hparams.n_audio_ctx; - const int n_audio_state = hparams.n_audio_state; - const int n_audio_layer = hparams.n_audio_layer; - - const int n_text_ctx = hparams.n_text_ctx; - const int n_text_state = hparams.n_text_state; - const int n_text_layer = hparams.n_text_layer; - - const int n_mels = hparams.n_mels; - - model.layers_encoder.resize(n_audio_layer); - model.layers_decoder.resize(n_text_layer); - - // encoder - { - model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx); - - model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state); - model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); - - model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state); - model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); - - model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - // map by name - model.tensors["encoder.positional_embedding"] = model.e_pe; - - model.tensors["encoder.conv1.weight"] = model.e_conv_1_w; - model.tensors["encoder.conv1.bias"] = model.e_conv_1_b; - - model.tensors["encoder.conv2.weight"] = model.e_conv_2_w; - model.tensors["encoder.conv2.bias"] = model.e_conv_2_b; - - model.tensors["encoder.ln_post.weight"] = model.e_ln_w; - model.tensors["encoder.ln_post.bias"] = model.e_ln_b; - - for (int i = 0; i < n_audio_layer; ++i) { - auto & layer = model.layers_encoder[i]; - - layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state); - layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state); - - layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state); - layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); - layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); - - layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); - layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); - layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - // map by name - model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; - - model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; - - model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; - - model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; - - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; - - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; - - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; - - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; - } - } - - // decoder - { - model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx); - - model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab); - - model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - // map by name - model.tensors["decoder.positional_embedding"] = model.d_pe; - - model.tensors["decoder.token_embedding.weight"] = model.d_te; - - model.tensors["decoder.ln.weight"] = model.d_ln_w; - model.tensors["decoder.ln.bias"] = model.d_ln_b; - - for (int i = 0; i < n_text_layer; ++i) { - auto & layer = model.layers_decoder[i]; - - layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state); - layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state); - - layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state); - layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - - layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - - layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - // map by name - model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; - - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w; - - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b; - } - } - } - - // key + value memory - { - const auto & hparams = model.hparams; - - const int n_text_state = hparams.n_text_state; - const int n_text_layer = hparams.n_text_layer; - const int n_text_ctx = hparams.n_text_ctx; - - // key/value memory for the self-attention layer - { - const int n_mem = n_text_layer*n_text_ctx; - const int n_elements = n_text_state*n_mem; - - model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); - model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); - } - - // key/value memory for the cross-attention layer - { - const int n_audio_ctx = hparams.n_audio_ctx; - - const int n_mem = n_text_layer*n_audio_ctx; - const int n_elements = n_text_state*n_mem; - - model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); - model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); - } - - const size_t memory_size = - ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + - ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); - - printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0); - } - - // load weights - { - size_t total_size = 0; - - while (true) { - int32_t n_dims; - int32_t length; - int32_t ftype; - - fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); - fin.read(reinterpret_cast(&length), sizeof(length)); - fin.read(reinterpret_cast(&ftype), sizeof(ftype)); - - if (fin.eof()) { - break; - } - - int32_t nelements = 1; - int32_t ne[3] = { 1, 1, 1 }; - for (int i = 0; i < n_dims; ++i) { - fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); - nelements *= ne[i]; - } - - std::string name(length, 0); - fin.read(&name[0], length); - - if (model.tensors.find(name.data()) == model.tensors.end()) { - fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); - return false; - } - - auto tensor = model.tensors[name.data()]; - if (ggml_nelements(tensor) != nelements) { - fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); - return false; - } - - if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) { - fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n", - __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]); - return false; - } - - const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t); - - if (nelements*bpe != ggml_nbytes(tensor)) { - fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", - __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); - return false; - } - - fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); - - //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); - total_size += ggml_nbytes(tensor); - } - - printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); - } - - fin.close(); - - return true; -} - -// evaluate the encoder -// -// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder -// part of the transformer model and returns the encoded features -// -// - model: the model -// - n_threads: number of threads to use -// - mel_offset: offset in the mel spectrogram (i.e. audio offset) -// - mel_inp: input mel spectrogram -// - features: output encoded features -// -bool whisper_encode( - const whisper_model & model, - const int n_threads, - const int mel_offset, - const whisper_mel & mel_inp, - std::vector & features) { - const auto & hparams = model.hparams; - - const int n_vocab = hparams.n_vocab; - - const int n_ctx = hparams.n_audio_ctx; - const int n_state = hparams.n_audio_state; - const int n_head = hparams.n_audio_head; - const int n_layer = hparams.n_audio_layer; - - const int N = n_ctx; - - const int n_mels = hparams.n_mels; - assert(mel_inp.n_mel == n_mels); - - struct ggml_init_params params = { - .mem_size = g_buf_compute.size(), - .mem_buffer = g_buf_compute.data(), - }; - - struct ggml_context * ctx0 = ggml_init(params); - - struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels); - assert(mel->type == GGML_TYPE_F32); - { - float * dst = (float *) mel->data; - memset(dst, 0, ggml_nbytes(mel)); - - const int i0 = std::min(mel_offset, mel_inp.n_len); - const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len); - - for (int j = 0; j < mel_inp.n_mel; ++j) { - for (int i = i0; i < i1; ++i) { - dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i]; - } - } - } - - struct ggml_tensor * cur; - - // convolution + gelu - { - cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel); - cur = ggml_add(ctx0, - ggml_repeat(ctx0, - model.e_conv_1_b, - cur), - cur); - - cur = ggml_gelu(ctx0, cur); - - cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur); - cur = ggml_add(ctx0, - ggml_repeat(ctx0, - model.e_conv_2_b, - cur), - cur); - - cur = ggml_gelu(ctx0, cur); - } - - cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur)); - - struct ggml_tensor * inpL = cur; - - for (int il = 0; il < n_layer; ++il) { - const auto & layer = model.layers_encoder[il]; - - // create separate context for each layer to reduce memory usage - - struct ggml_init_params paramsL = { - .mem_size = g_buf_compute_layer.size(), - .mem_buffer = g_buf_compute_layer.data(), - }; - - struct ggml_context * ctxL = ggml_init(paramsL); - - // norm - { - cur = ggml_norm(ctxL, inpL); - - // cur = ln_0_w*cur + ln_0_b - cur = ggml_add(ctxL, - ggml_mul(ctxL, - ggml_repeat(ctxL, layer.attn_ln_0_w, cur), - cur), - ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); - } - - // self-attention - { - struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, - layer.attn_q_w, - cur); - - Qcur = ggml_add(ctxL, - ggml_repeat(ctxL, - layer.attn_q_b, - Qcur), - Qcur); - - //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); - - // note: no bias for Key - struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, - layer.attn_k_w, - cur); - - //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, - layer.attn_v_w, - cur); - - Vcur = ggml_add(ctxL, - ggml_repeat(ctxL, - layer.attn_v_b, - Vcur), - Vcur); - - // ------ - -#ifdef USE_FLASH_ATTN - struct ggml_tensor * Q = - ggml_permute(ctxL, - ggml_cpy(ctxL, - Qcur, - ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), - 0, 2, 1, 3); - - struct ggml_tensor * K = - ggml_permute(ctxL, - ggml_cpy(ctxL, - Kcur, - ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), - 0, 2, 1, 3); - - struct ggml_tensor * V = - ggml_cpy(ctxL, - ggml_permute(ctxL, - ggml_reshape_3d(ctxL, - Vcur, - n_state/n_head, n_head, N), - 1, 2, 0, 3), - ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head) - ); - - struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false); -#else - struct ggml_tensor * Q = - ggml_permute(ctxL, - ggml_cpy(ctxL, - Qcur, - ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), - 0, 2, 1, 3); - - struct ggml_tensor * K = - ggml_permute(ctxL, - ggml_cpy(ctxL, - Kcur, - ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), - 0, 2, 1, 3); - - // K * Q - struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); - - struct ggml_tensor * KQ_scaled = - ggml_scale(ctxL, - KQ, - ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) - ); - - struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled); - - //struct ggml_tensor * V_trans = - // ggml_permute(ctxL, - // ggml_cpy(ctxL, - // Vcur, - // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), - // 1, 2, 0, 3); - - //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); - - struct ggml_tensor * V = - ggml_cpy(ctxL, - ggml_permute(ctxL, - ggml_reshape_3d(ctxL, - Vcur, - n_state/n_head, n_head, N), - 0, 2, 1, 3), - ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head) - ); - - struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max); -#endif - - struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); - - cur = ggml_cpy(ctxL, - KQV_merged, - ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); - } - - // projection - { - cur = ggml_mul_mat(ctxL, - layer.attn_ln_1_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.attn_ln_1_b, cur), - cur); - } - - // add the input - cur = ggml_add(ctxL, cur, inpL); - - struct ggml_tensor * inpFF = cur; - - // feed-forward network - { - // norm - { - cur = ggml_norm(ctxL, inpFF); - - // cur = mlp_ln_w*cur + mlp_ln_b - cur = ggml_add(ctxL, - ggml_mul(ctxL, - ggml_repeat(ctxL, layer.mlp_ln_w, cur), - cur), - ggml_repeat(ctxL, layer.mlp_ln_b, cur)); - } - -#ifdef USE_FLASH_FF - cur = ggml_flash_ff(ctxL, - ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)), - layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b); -#else - // fully connected - cur = ggml_mul_mat(ctxL, - layer.mlp_0_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.mlp_0_b, cur), - cur); - - // GELU activation - cur = ggml_gelu(ctxL, cur); - - // projection - cur = ggml_mul_mat(ctxL, - layer.mlp_1_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.mlp_1_b, cur), - cur); -#endif - } - - // output from this layer - struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); - - { - struct ggml_cgraph gf = { .n_threads = n_threads }; - - ggml_build_forward_expand(&gf, inpO); - ggml_graph_compute (ctxL, &gf); - - //ggml_graph_print(&gf); - } - - // TODO: this is a hack to have per-layer computation graphs - need to come up with something better - // input for next layer (inpO -> inpL) - memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); - inpL->op = GGML_OP_NONE; - inpL->src0 = NULL; - inpL->src1 = NULL; - - //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); - - ggml_free(ctxL); - } - - cur = inpL; - - // norm - { - cur = ggml_norm(ctx0, cur); - - // cur = ln_f_g*cur + ln_f_b - cur = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.e_ln_w, cur), - cur), - ggml_repeat(ctx0, model.e_ln_b, cur)); - } - - // run the computation - { - struct ggml_cgraph gf = { .n_threads = n_threads }; - - ggml_build_forward_expand(&gf, cur); - ggml_graph_compute (ctx0, &gf); - - //ggml_graph_print(&gf); - } - - // cur - //{ - // printf("ne0 = %d\n", cur->ne[0]); - // printf("ne1 = %d\n", cur->ne[1]); - // for (int i = 0; i < 10; ++i) { - // printf("%8.4f ", ((float *)(cur->data))[i]); - // } - // printf("... "); - // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) { - // printf("%8.4f ", ((float *)(cur->data))[i]); - // } - // printf("\n"); - //} - - // pre-compute cross-attention memory - { - struct ggml_cgraph gf = { .n_threads = n_threads }; - - // TODO: hack to disconnect the encoded features from the previous graph - cur->op = GGML_OP_NONE; - cur->src0 = NULL; - cur->src1 = NULL; - - for (int il = 0; il < model.hparams.n_text_layer; ++il) { - auto & layer = model.layers_decoder[il]; - - struct ggml_tensor * Kcross = ggml_mul_mat(ctx0, - layer.cross_attn_k_w, - cur); - - Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); - - struct ggml_tensor * Vcross = ggml_mul_mat(ctx0, - layer.cross_attn_v_w, - cur); - - Vcross = ggml_add(ctx0, - ggml_repeat(ctx0, - layer.cross_attn_v_b, - Vcross), - Vcross); - - struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx)); - struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx)); - - ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); - ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); - } - - ggml_graph_compute(ctx0, &gf); - } - - //////////////////////////////////////////////////////////////////////////// - - // output the features - assert(cur->type == GGML_TYPE_F32); - features.resize(cur->ne[0]*cur->ne[1]); - memcpy(features.data(), cur->data, features.size()*sizeof(float)); - - //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0); - - ggml_free(ctx0); - - return true; -} - -// evaluate the decoder -// -// given text prompt + audio features -> predicts the probabilities for the next token -// -// - model: the model -// - n_threads: number of threads to use -// - n_past: prompt length -// - prompt: text prompt -// - logits_out: output logits -// - probs_out: output probabilities -// -bool whisper_decode( - const whisper_model & model, - const int n_threads, - const int n_past, - const std::vector & prompt, - std::vector & logits_out, - std::vector & probs_out) { - const auto & hparams = model.hparams; - - const int n_vocab = hparams.n_vocab; - - const int n_ctx = hparams.n_text_ctx; - const int n_state = hparams.n_text_state; - const int n_head = hparams.n_text_head; - const int n_layer = hparams.n_text_layer; - - const int N = prompt.size(); - const int M = hparams.n_audio_ctx; - - struct ggml_init_params params = { - .mem_size = g_buf_compute.size(), - .mem_buffer = g_buf_compute.data(), - }; - - struct ggml_context * ctx0 = ggml_init(params); - - struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - memcpy(embd->data, prompt.data(), N*ggml_element_size(embd)); - - struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - for (int i = 0; i < N; ++i) { - ((int32_t *) position->data)[i] = n_past + i; - } - - // token encoding + position encoding - struct ggml_tensor * cur = - ggml_add(ctx0, - ggml_get_rows(ctx0, model.d_te, embd), - ggml_get_rows(ctx0, model.d_pe, position)); - - struct ggml_tensor * inpL = cur; - - for (int il = 0; il < n_layer; ++il) { - const auto & layer = model.layers_decoder[il]; - - struct ggml_init_params paramsL = { - .mem_size = g_buf_compute_layer.size(), - .mem_buffer = g_buf_compute_layer.data(), - }; - - struct ggml_context * ctxL = ggml_init(paramsL); - struct ggml_cgraph gf = { .n_threads = n_threads }; - - // norm - { - cur = ggml_norm(ctxL, inpL); - - // cur = ln_0_w*cur + ln_0_b - cur = ggml_add(ctxL, - ggml_mul(ctxL, - ggml_repeat(ctxL, layer.attn_ln_0_w, cur), - cur), - ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); - } - - // self-attention - { - struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, - layer.attn_q_w, - cur); - - Qcur = ggml_add(ctxL, - ggml_repeat(ctxL, - layer.attn_q_b, - Qcur), - Qcur); - - Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); - - // note: no bias for Key - struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, - layer.attn_k_w, - cur); - - Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, - layer.attn_v_w, - cur); - - Vcur = ggml_add(ctxL, - ggml_repeat(ctxL, - layer.attn_v_b, - Vcur), - Vcur); - - // store key and value to memory - { - struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past)); - struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past)); - - ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k)); - ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v)); - } - - // ------ - - struct ggml_tensor * Q = - ggml_permute(ctxL, - ggml_cpy(ctxL, - Qcur, - ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), - 0, 2, 1, 3); - - struct ggml_tensor * K = - ggml_permute(ctxL, - ggml_reshape_3d(ctxL, - ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state), - n_state/n_head, n_head, n_past + N), - 0, 2, 1, 3); - - // K * Q - struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); - - //struct ggml_tensor * KQ_scaled = - // ggml_scale(ctxL, - // KQ, - // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) - // ); - - struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past); - - struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked); - - struct ggml_tensor * V_trans = - ggml_permute(ctxL, - ggml_reshape_3d(ctxL, - ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state), - n_state/n_head, n_head, n_past + N), - 1, 2, 0, 3); - - struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); - - struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); - - cur = ggml_cpy(ctxL, - KQV_merged, - ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); - } - - { - cur = ggml_mul_mat(ctxL, - layer.attn_ln_1_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.attn_ln_1_b, cur), - cur); - } - - // add the input - struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL); - - // norm - { - cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here - - // cur = ln_0_w*cur + ln_0_b - cur = ggml_add(ctxL, - ggml_mul(ctxL, - ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur), - cur), - ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur)); - } - - // cross-attention - { - struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, - layer.cross_attn_q_w, - cur); - - Qcur = ggml_add(ctxL, - ggml_repeat(ctxL, - layer.cross_attn_q_b, - Qcur), - Qcur); - - Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); - - // Kcross is already scaled - struct ggml_tensor * Kcross = - ggml_reshape_3d(ctxL, - ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state), - n_state/n_head, n_head, M); - - struct ggml_tensor * Vcross = - ggml_reshape_3d(ctxL, - ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state), - n_state/n_head, n_head, M); - - // ------ - - struct ggml_tensor * Q = - ggml_permute(ctxL, - ggml_cpy(ctxL, - Qcur, - ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), - 0, 2, 1, 3); - - struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3); - - // K * Q - struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); - - //struct ggml_tensor * KQ_scaled = - // ggml_scale(ctxL, - // KQ, - // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) - // ); - - // no masking for cross-attention - //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past); - - struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ); - - struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3); - - struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); - - struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); - - // cur = KQV_merged.contiguous().view(n_state, N) - cur = ggml_cpy(ctxL, - KQV_merged, - ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); - } - - // projection - { - cur = ggml_mul_mat(ctxL, - layer.cross_attn_ln_1_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur), - cur); - } - - // add the input - cur = ggml_add(ctxL, cur, inpCA); - - struct ggml_tensor * inpFF = cur; - - // feed-forward network - { - // norm - { - cur = ggml_norm(ctxL, inpFF); - - // cur = mlp_ln_w*cur + mlp_ln_b - cur = ggml_add(ctxL, - ggml_mul(ctxL, - ggml_repeat(ctxL, layer.mlp_ln_w, cur), - cur), - ggml_repeat(ctxL, layer.mlp_ln_b, cur)); - } - - // fully connected - cur = ggml_mul_mat(ctxL, - layer.mlp_0_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.mlp_0_b, cur), - cur); - - // GELU activation - cur = ggml_gelu(ctxL, cur); - - // projection - cur = ggml_mul_mat(ctxL, - layer.mlp_1_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.mlp_1_b, cur), - cur); - } - - // output from this layer - struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); - - { - ggml_build_forward_expand(&gf, inpO); - ggml_graph_compute (ctxL, &gf); - - //ggml_graph_print(&gf); - } - - // TODO: this is a hack to have per-layer computation graphs - need to come up with something better - // input for next layer (inpO -> inpL) - memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); - inpL->op = GGML_OP_NONE; - inpL->src0 = NULL; - inpL->src1 = NULL; - - if (N > 1) { - //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); - } - - ggml_free(ctxL); - } - - cur = inpL; - - // norm - { - cur = ggml_norm(ctx0, cur); - - cur = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.d_ln_w, cur), - cur), - ggml_repeat(ctx0, model.d_ln_b, cur)); - } - - struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur); - - // logits -> probs - cur = ggml_dup(ctx0, logits); - cur = ggml_soft_max(ctx0, cur); // in-place - - // run the computation - { - struct ggml_cgraph gf = { .n_threads = n_threads }; - - ggml_build_forward_expand(&gf, cur); - ggml_graph_compute (ctx0, &gf); - } - - logits_out.resize(N*n_vocab); - memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab); - - probs_out.resize(N*n_vocab); - memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab); - - if (N > 1) { - //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N; - //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token); - //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx); - } - - ggml_free(ctx0); - - return true; -} - -// the most basic sampling scheme - select the top token -// TODO: beam search -// TODO: temperature -whisper_vocab::id whisper_sample_best( - const whisper_vocab & vocab, - const float * probs, bool need_timestamp) { - int n_logits = vocab.id_to_token.size(); - - std::vector> probs_id; - probs_id.reserve(n_logits); - - for (int i = 0; i < n_logits; i++) { - probs_id.push_back(std::make_pair(probs[i], i)); - } - - const int top_k = 4; - - // find the top K tokens - std::partial_sort( - probs_id.begin(), - probs_id.begin() + top_k, probs_id.end(), - [](const std::pair & a, const std::pair & b) { - return a.first > b.first; - }); - - probs_id.resize(top_k); - - //printf("\n"); - //for (int i = 0; i < (int) probs_id.size(); i++) { - // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); - //} - - if (need_timestamp) { - // at the end of the 30-second audio segment, we start giving preference to time tokens - for (int i = 0; i < top_k; i++) { - if (probs_id[i].second > vocab.token_beg + 1300 && probs_id[i].first > 0.01*probs_id[0].first) { - return probs_id[i].second; - } - } - } - - int res = 0; - while ((probs_id[res].second == vocab.token_sot || - probs_id[res].second == vocab.token_solm || - probs_id[res].second == vocab.token_not) && - res < (int) probs_id.size() - 1) { - res++; - } - - return probs_id[res].second; -} - -// samples only from the timestamps tokens -whisper_vocab::id whisper_sample_timestamp( - const whisper_vocab & vocab, - const float * probs) { - int n_logits = vocab.id_to_token.size(); - - std::vector> probs_id; - probs_id.reserve(n_logits); - - for (int i = vocab.token_beg + 1; i < n_logits; i++) { - probs_id.push_back(std::make_pair(probs[i], i)); - } - - const int top_k = 10; - - // find the top K tokens - std::partial_sort( - probs_id.begin(), - probs_id.begin() + top_k, probs_id.end(), - [](const std::pair & a, const std::pair & b) { - return a.first > b.first; - }); - - probs_id.resize(top_k); - - //printf("\n"); - //for (int i = 0; i < (int) probs_id.size(); i++) { - // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); - //} - - return probs_id[0].second; -} - -// naive Discrete Fourier Transform -// input is real-valued -// output is complex-valued -void dft(const std::vector & in, std::vector & out) { - int N = in.size(); - - out.resize(N*2); - - for (int k = 0; k < N; k++) { - float re = 0; - float im = 0; +// third-party utilities +// use your favorite implementations +#define DR_WAV_IMPLEMENTATION +#include "dr_wav.h" - for (int n = 0; n < N; n++) { - float angle = 2*M_PI*k*n/N; - re += in[n]*cos(angle); - im -= in[n]*sin(angle); - } +#include +#include +#include +#include +#include - out[k*2 + 0] = re; - out[k*2 + 1] = im; - } +int64_t get_time_us() { + return std::chrono::duration_cast( + std::chrono::high_resolution_clock::now().time_since_epoch()).count(); } -// Cooley-Tukey FFT -// poor man's implementation - use something better -// input is real-valued -// output is complex-valued -void fft(const std::vector & in, std::vector & out) { - out.resize(in.size()*2); - - int N = in.size(); - - if (N == 1) { - out[0] = in[0]; - out[1] = 0; - return; - } - - if (N%2 == 1) { - dft(in, out); - return; - } - - std::vector even; - std::vector odd; - - for (int i = 0; i < N; i++) { - if (i % 2 == 0) { - even.push_back(in[i]); - } else { - odd.push_back(in[i]); - } - } - - std::vector even_fft; - std::vector odd_fft; - - fft(even, even_fft); - fft(odd, odd_fft); - - for (int k = 0; k < N/2; k++) { - float theta = 2*M_PI*k/N; - - float re = cos(theta); - float im = -sin(theta); - - float re_odd = odd_fft[2*k + 0]; - float im_odd = odd_fft[2*k + 1]; +// 500 -> 00:05.000 +// 6000 -> 01:00.000 +std::string to_timestamp(int64_t t) { + int64_t sec = t/100; + int64_t msec = t - sec*100; + int64_t min = sec/60; + sec = sec - min*60; - out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd; - out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd; + char buf[32]; + snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec); - out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd; - out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd; - } + return std::string(buf); } -// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124 -bool log_mel_spectrogram( - const std::vector sf32, - const int sample_rate, - const int fft_size, - const int fft_step, - const int n_mel, - const int n_threads, - const whisper_filters & filters, - whisper_mel & mel) { - const int n_sample = sf32.size(); - const float * samples = sf32.data(); - - // Hanning window - std::vector hann; - hann.resize(fft_size); - for (int i = 0; i < fft_size; i++) { - hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size))); - } - - mel.n_mel = n_mel; - mel.n_len = (n_sample)/fft_step; - mel.data.resize(mel.n_mel*mel.n_len); - - const int n_fft = 1 + fft_size/2; - - printf("%s: n_sample = %d, n_len = %d\n", __func__, n_sample, mel.n_len); - printf("%s: recording length: %f s\n", __func__, (float) n_sample/sample_rate); - - std::vector workers(n_threads); - for (int iw = 0; iw < n_threads; ++iw) { - workers[iw] = std::thread([&](int ith) { - std::vector fft_in; - fft_in.resize(fft_size); - for (int i = 0; i < fft_size; i++) { - fft_in[i] = 0.0; - } - - std::vector fft_out; - fft_out.resize(2*fft_size); - - for (int i = ith; i < mel.n_len; i += n_threads) { - const int offset = i*fft_step; - - // apply Hanning window - for (int j = 0; j < fft_size; j++) { - if (offset + j < n_sample) { - fft_in[j] = hann[j]*samples[offset + j]; - } else { - fft_in[j] = 0.0; - } - } +struct whisper_result { + whisper_token id; + int64_t t; +}; - // FFT -> mag^2 - fft(fft_in, fft_out); +// command-line parameters +struct whisper_params { + int32_t seed = -1; // RNG seed, not used currently + int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); - for (int j = 0; j < fft_size; j++) { - fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]); - } - for (int j = 1; j < fft_size/2; j++) { - //if (i == 0) { - // printf("%d: %f %f\n", j, fft_out[j], fft_out[fft_size - j]); - //} - fft_out[j] += fft_out[fft_size - j]; - } - if (i == 0) { - //for (int j = 0; j < fft_size; j++) { - // printf("%d: %e\n", j, fft_out[j]); - //} - } + bool verbose = false; + bool translate = false; + bool print_special_tokens = false; + bool no_timestamps = false; - // mel spectrogram - for (int j = 0; j < mel.n_mel; j++) { - double sum = 0.0; + std::string language = "en"; + std::string model = "models/ggml-base.en.bin"; + std::string fname_inp = "samples/jfk.wav"; +}; - for (int k = 0; k < n_fft; k++) { - sum += fft_out[k]*filters.data[j*n_fft + k]; - } - if (sum < 1e-10) { - sum = 1e-10; - } +void whisper_print_usage(int argc, char ** argv, const whisper_params & params); - sum = log10(sum); +bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { + for (int i = 1; i < argc; i++) { + std::string arg = argv[i]; - mel.data[j*mel.n_len + i] = sum; - } + if (arg == "-s" || arg == "--seed") { + params.seed = std::stoi(argv[++i]); + } else if (arg == "-t" || arg == "--threads") { + params.n_threads = std::stoi(argv[++i]); + } else if (arg == "-v" || arg == "--verbose") { + params.verbose = true; + } else if (arg == "--translate") { + params.translate = true; + } else if (arg == "-l" || arg == "--language") { + params.language = argv[++i]; + if (whisper_lang_id(params.language.c_str()) == -1) { + fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); + whisper_print_usage(argc, argv, params); + exit(0); } - }, iw); - } - - for (int iw = 0; iw < n_threads; ++iw) { - workers[iw].join(); - } - - // clamping and normalization - double mmax = -1e20; - for (int i = 0; i < mel.n_mel*mel.n_len; i++) { - if (mel.data[i] > mmax) { - mmax = mel.data[i]; - } - } - //printf("%s: max = %f\n", __func__, mmax); - - mmax -= 8.0; - - for (int i = 0; i < mel.n_mel*mel.n_len; i++) { - if (mel.data[i] < mmax) { - mel.data[i] = mmax; + } else if (arg == "-ps" || arg == "--print_special") { + params.print_special_tokens = true; + } else if (arg == "-nt" || arg == "--no_timestamps") { + params.no_timestamps = true; + } else if (arg == "-m" || arg == "--model") { + params.model = argv[++i]; + } else if (arg == "-f" || arg == "--file") { + params.fname_inp = argv[++i]; + } else if (arg == "-h" || arg == "--help") { + whisper_print_usage(argc, argv, params); + exit(0); + } else { + fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); + whisper_print_usage(argc, argv, params); + exit(0); } - - mel.data[i] = (mel.data[i] + 4.0)/4.0; } return true; } -// 500 -> 00:05.000 -// 6000 -> 01:00.000 -std::string to_timestamp(int64_t t) { - int64_t sec = t/100; - int64_t msec = t - sec*100; - int64_t min = sec/60; - sec = sec - min*60; - - char buf[32]; - snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec); - - return std::string(buf); +void whisper_print_usage(int argc, char ** argv, const whisper_params & params) { + fprintf(stderr, "\n"); + fprintf(stderr, "usage: %s [options]\n", argv[0]); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); + fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); + fprintf(stderr, " -v, --verbose verbose output\n"); + fprintf(stderr, " --translate translate from source language to english\n"); + fprintf(stderr, " -ps, --print_special print special tokens\n"); + fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n"); + fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str()); + fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str()); + fprintf(stderr, " -f FNAME, --file FNAME input WAV file path (default: %s)\n", params.fname_inp.c_str()); + fprintf(stderr, "\n"); } int main(int argc, char ** argv) { - const int64_t t_main_start_us = ggml_time_us(); + const int64_t t_main_start_us = get_time_us(); whisper_params params; @@ -2129,31 +123,9 @@ int main(int argc, char ** argv) { params.seed = time(NULL); } - // Model loading - - //printf("%s: seed = %d\n", __func__, params.seed); - - int64_t t_load_us = 0; - int64_t t_mel_us = 0; - int64_t t_sample_us = 0; - int64_t t_encode_us = 0; - int64_t t_decode_us = 0; - - whisper_vocab vocab; - whisper_model model; - - // load the model - { - const int64_t t_start_us = ggml_time_us(); - - if (!whisper_model_load(params.model, model, vocab)) { - fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); - whisper_print_usage(argc, argv, {}); - return 1; - } + // whisper init - t_load_us = ggml_time_us() - t_start_us; - } + struct whisper_context * ctx = whisper_init(params.model.c_str()); // WAV input std::vector pcmf32; @@ -2201,19 +173,15 @@ int main(int argc, char ** argv) { } // compute log mel spectrogram - whisper_mel mel_inp; - { - const int64_t t_start_us = ggml_time_us(); - - log_mel_spectrogram(pcmf32, SAMPLE_RATE, N_FFT, HOP_LENGTH, N_MEL, params.n_threads, model.filters, mel_inp); - - t_mel_us = ggml_time_us() - t_start_us; + if (whisper_pcm_to_mel(ctx, pcmf32.data(), pcmf32.size(), params.n_threads) != 0) { + fprintf(stderr, "%s: failed to compute log mel spectrogram\n", argv[0]); + return 6; } // print some info about the processing { printf("\n"); - if (!vocab.is_multilingual()) { + if (!whisper_is_multilingual(ctx)) { if (params.language != "en" || params.translate) { params.language = "en"; params.translate = false; @@ -2222,23 +190,23 @@ int main(int argc, char ** argv) { } printf("%s: processing %d samples (%.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n", __func__, int(pcmf32.size()), float(pcmf32.size())/SAMPLE_RATE, params.n_threads, - g_lang.at(params.language).second.c_str(), + params.language.c_str(), params.translate ? "translate" : "transcribe", params.no_timestamps ? 0 : 1); printf("\n"); } // the accumulated text context so far - std::vector prompt_past = { }; + std::vector prompt_past = { }; // these tokens determine the task that will be performed - std::vector prompt_init = { vocab.token_sot }; - if (vocab.is_multilingual()) { - prompt_init.push_back(vocab.token_sot + 1 + g_lang.at(params.language).first); + std::vector prompt_init = { whisper_token_sot(ctx) }; + if (whisper_is_multilingual(ctx)) { + prompt_init.push_back(whisper_token_sot(ctx) + 1 + whisper_lang_id(params.language.c_str())); if (params.translate) { - prompt_init.push_back(vocab.token_translate); + prompt_init.push_back(whisper_token_translate()); } else { - prompt_init.push_back(vocab.token_transcribe); + prompt_init.push_back(whisper_token_transcribe()); } } @@ -2248,35 +216,25 @@ int main(int argc, char ** argv) { // main loop int seek = 0; while (true) { - if (seek >= mel_inp.n_len) { + if (seek >= whisper_n_len(ctx)) { break; } // encode audio features starting at offset seek - std::vector features; - { - const int64_t t_start_us = ggml_time_us(); - - if (!whisper_encode(model, params.n_threads, seek, mel_inp, features)) { - fprintf(stderr, "%s: failed to eval\n", __func__); - return 1; - } - - t_encode_us += ggml_time_us() - t_start_us; + if (whisper_encode(ctx, seek, params.n_threads) != 0) { + fprintf(stderr, "%s: failed to encode\n", __func__); + return 7; } - std::vector probs; - std::vector logits; - - std::vector prompt; + std::vector prompt; int n_past = 0; // if we have already generated some text, use it as a prompt to condition the next generation if (prompt_past.size() > 0) { - int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size())); + int n_take = std::min(whisper_n_text_ctx(ctx)/2, int(prompt_past.size())); - prompt = { vocab.token_prev }; + prompt = { whisper_token_prev(ctx) }; prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end()); prompt_past.clear(); @@ -2287,7 +245,7 @@ int main(int argc, char ** argv) { bool done = false; int seek_delta = 100*CHUNK_SIZE; - whisper_vocab::id last_id = 0; + whisper_token last_id = 0; // print the prompt //printf("\n\n"); @@ -2300,17 +258,10 @@ int main(int argc, char ** argv) { int result_len = 0; std::vector result_cur; - for (int i = 0; i < model.hparams.n_text_ctx/2 - 4; ++i) { - // decode - if (prompt.size() > 0) { - const int64_t t_start_us = ggml_time_us(); - - if (!whisper_decode(model, params.n_threads, n_past, prompt, logits, probs)) { - fprintf(stderr, "%s: failed to eval\n", __func__); - return 1; - } - - t_decode_us += ggml_time_us() - t_start_us; + for (int i = 0; i < whisper_n_text_ctx(ctx)/2 - 4; ++i) { + if (whisper_decode(ctx, prompt.data(), prompt.size(), n_past, params.n_threads) != 0) { + fprintf(stderr, "%s: failed to decode\n", __func__); + return 8; } n_past += prompt.size(); @@ -2324,37 +275,31 @@ int main(int argc, char ** argv) { // feel free to experiment! // { - const int n_vocab = model.hparams.n_vocab; - - whisper_vocab::id id = 0; - whisper_vocab::id tid = vocab.token_beg; + const int n_vocab = whisper_n_vocab(ctx); - { - const int64_t t_start_sample_us = ggml_time_us(); - - id = whisper_sample_best(vocab, probs.data() + (probs.size() - n_vocab), result_len == 0); - if (i > 0) { - tid = whisper_sample_timestamp(vocab, probs.data() + (probs.size() - n_vocab)); - } + whisper_token id = 0; + whisper_token tid = whisper_token_beg(ctx); - t_sample_us += ggml_time_us() - t_start_sample_us; + id = whisper_sample_best(ctx, result_len == 0); + if (i > 0) { + tid = whisper_sample_timestamp(ctx); } // update sliding window - if (id > vocab.token_beg) { - seek_delta = 2*(id - vocab.token_beg); + if (id > whisper_token_beg(ctx)) { + seek_delta = 2*(id - whisper_token_beg(ctx)); result_len = i + 1; } last_id = id; // add it to the context prompt.push_back(id); - result_cur.push_back({ id, seek + 2*(tid - vocab.token_beg) }); + result_cur.push_back({ id, seek + 2*(tid - whisper_token_beg(ctx)) }); //printf("%s: %s\n", __func__, vocab.id_to_token[id].c_str()); // end of text token - if (id == vocab.token_eot) { + if (id == whisper_token_eot(ctx)) { break; } } @@ -2377,11 +322,11 @@ int main(int argc, char ** argv) { std::string text = ""; for (int i = 0; i < result_cur.size(); i++) { - if (params.print_special_tokens == false && result_cur[i].id >= vocab.token_eot) { + if (params.print_special_tokens == false && result_cur[i].id >= whisper_token_eot(ctx)) { } else { - text += vocab.id_to_token[result_cur[i].id]; + text += whisper_token_to_str(ctx, result_cur[i].id); } - if (result_cur[i].id > vocab.token_beg) { + if (result_cur[i].id > whisper_token_beg(ctx)) { const auto t1 = result_cur[i].t; if (!text.empty()) { if (params.no_timestamps) { @@ -2392,7 +337,7 @@ int main(int argc, char ** argv) { } } text = ""; - while (result_cur[i].id > vocab.token_beg && i < result_cur.size()) { + while (result_cur[i].id > whisper_token_beg(ctx) && i < result_cur.size()) { i++; } i--; @@ -2408,45 +353,8 @@ int main(int argc, char ** argv) { seek += seek_delta; } - // WIP: attempt for per-token timestamps - //if (!params.no_timestamps && result_all.size() > 0) { - // const int64_t dt = 500; // 5 second intervals - - // int i0 = 0; - - // int64_t t0 = result_all[0].t; - // int64_t t1 = t0; - - // printf("\n\n"); - // for (int i = 0; i < result_all.size(); ++i) { - // printf("'%s' -> %lld\n", vocab.id_to_token[result_all[i].id].c_str(), result_all[i].t); - // if (result_all[i].t - t0 > dt) { - // t1 = result_all[i - 1].t; - // printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str()); - // for (int j = i0; j < i; ++j) { - // printf("%s", vocab.id_to_token.at(result_all[j].id).c_str()); - // } - // printf("\n"); - // i0 = i; - // t0 = result_all[i].t; - // } - // } - //} - - // report timing - { - const int64_t t_main_end_us = ggml_time_us(); - - printf("\n\n"); - printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); - printf("%s: mel time = %8.2f ms\n", __func__, t_mel_us/1000.0f); - printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); - printf("%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, t_encode_us/1000.0f, t_encode_us/1000.0f/model.hparams.n_audio_layer); - printf("%s: decode time = %8.2f ms\n", __func__, t_decode_us/1000.0f); - printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); - } - - ggml_free(model.ctx); + whisper_print_timings(ctx); + whisper_free(ctx); return 0; } diff --git a/stream.cpp b/stream.cpp index 52c4adf..0f5a09e 100644 --- a/stream.cpp +++ b/stream.cpp @@ -2,2116 +2,119 @@ // // A very quick-n-dirty implementation serving mainly as a proof of concept. -#include "ggml.h" +#include "whisper.h" -#define USE_FLASH_ATTN -#define USE_FLASH_FF - -// third-party utilities -// use your favorite implementations -#define DR_WAV_IMPLEMENTATION -#include "dr_wav.h" - -#include -#include - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -// available whisper models -enum e_model { - MODEL_UNKNOWN, - MODEL_TINY, - MODEL_BASE, - MODEL_SMALL, - MODEL_MEDIUM, - MODEL_LARGE, -}; - -const std::map> g_lang = { - { "en", { 0, "english", } }, - { "zh", { 1, "chinese", } }, - { "de", { 2, "german", } }, - { "es", { 3, "spanish", } }, - { "ru", { 4, "russian", } }, - { "ko", { 5, "korean", } }, - { "fr", { 6, "french", } }, - { "ja", { 7, "japanese", } }, - { "pt", { 8, "portuguese", } }, - { "tr", { 9, "turkish", } }, - { "pl", { 10, "polish", } }, - { "ca", { 11, "catalan", } }, - { "nl", { 12, "dutch", } }, - { "ar", { 13, "arabic", } }, - { "sv", { 14, "swedish", } }, - { "it", { 15, "italian", } }, - { "id", { 16, "indonesian", } }, - { "hi", { 17, "hindi", } }, - { "fi", { 18, "finnish", } }, - { "vi", { 19, "vietnamese", } }, - { "iw", { 20, "hebrew", } }, - { "uk", { 21, "ukrainian", } }, - { "el", { 22, "greek", } }, - { "ms", { 23, "malay", } }, - { "cs", { 24, "czech", } }, - { "ro", { 25, "romanian", } }, - { "da", { 26, "danish", } }, - { "hu", { 27, "hungarian", } }, - { "ta", { 28, "tamil", } }, - { "no", { 29, "norwegian", } }, - { "th", { 30, "thai", } }, - { "ur", { 31, "urdu", } }, - { "hr", { 32, "croatian", } }, - { "bg", { 33, "bulgarian", } }, - { "lt", { 34, "lithuanian", } }, - { "la", { 35, "latin", } }, - { "mi", { 36, "maori", } }, - { "ml", { 37, "malayalam", } }, - { "cy", { 38, "welsh", } }, - { "sk", { 39, "slovak", } }, - { "te", { 40, "telugu", } }, - { "fa", { 41, "persian", } }, - { "lv", { 42, "latvian", } }, - { "bn", { 43, "bengali", } }, - { "sr", { 44, "serbian", } }, - { "az", { 45, "azerbaijani", } }, - { "sl", { 46, "slovenian", } }, - { "kn", { 47, "kannada", } }, - { "et", { 48, "estonian", } }, - { "mk", { 49, "macedonian", } }, - { "br", { 50, "breton", } }, - { "eu", { 51, "basque", } }, - { "is", { 52, "icelandic", } }, - { "hy", { 53, "armenian", } }, - { "ne", { 54, "nepali", } }, - { "mn", { 55, "mongolian", } }, - { "bs", { 56, "bosnian", } }, - { "kk", { 57, "kazakh", } }, - { "sq", { 58, "albanian", } }, - { "sw", { 59, "swahili", } }, - { "gl", { 60, "galician", } }, - { "mr", { 61, "marathi", } }, - { "pa", { 62, "punjabi", } }, - { "si", { 63, "sinhala", } }, - { "km", { 64, "khmer", } }, - { "sn", { 65, "shona", } }, - { "yo", { 66, "yoruba", } }, - { "so", { 67, "somali", } }, - { "af", { 68, "afrikaans", } }, - { "oc", { 69, "occitan", } }, - { "ka", { 70, "georgian", } }, - { "be", { 71, "belarusian", } }, - { "tg", { 72, "tajik", } }, - { "sd", { 73, "sindhi", } }, - { "gu", { 74, "gujarati", } }, - { "am", { 75, "amharic", } }, - { "yi", { 76, "yiddish", } }, - { "lo", { 77, "lao", } }, - { "uz", { 78, "uzbek", } }, - { "fo", { 79, "faroese", } }, - { "ht", { 80, "haitian creole", } }, - { "ps", { 81, "pashto", } }, - { "tk", { 82, "turkmen", } }, - { "nn", { 83, "nynorsk", } }, - { "mt", { 84, "maltese", } }, - { "sa", { 85, "sanskrit", } }, - { "lb", { 86, "luxembourgish", } }, - { "my", { 87, "myanmar", } }, - { "bo", { 88, "tibetan", } }, - { "tl", { 89, "tagalog", } }, - { "mg", { 90, "malagasy", } }, - { "as", { 91, "assamese", } }, - { "tt", { 92, "tatar", } }, - { "haw", { 93, "hawaiian", } }, - { "ln", { 94, "lingala", } }, - { "ha", { 95, "hausa", } }, - { "ba", { 96, "bashkir", } }, - { "jw", { 97, "javanese", } }, - { "su", { 98, "sundanese", } }, -}; - -const size_t MB = 1024*1024; - -const std::map MEM_REQ_MODEL = { - { MODEL_TINY, 86ull*MB }, - { MODEL_BASE, 165ull*MB }, - { MODEL_SMALL, 540ull*MB }, - { MODEL_MEDIUM, 1650ull*MB }, - { MODEL_LARGE, 3260ull*MB }, -}; - -const std::map MEM_REQ_ENCODE = { - { MODEL_TINY, 80ull*MB }, - { MODEL_BASE, 128ull*MB }, - { MODEL_SMALL, 300ull*MB }, - { MODEL_MEDIUM, 680ull*MB }, - { MODEL_LARGE, 1100ull*MB }, -}; - -const std::map MEM_REQ_ENCODE_LAYER = { - { MODEL_TINY, 64ull*MB }, - { MODEL_BASE, 84ull*MB }, - { MODEL_SMALL, 128ull*MB }, - { MODEL_MEDIUM, 172ull*MB }, - { MODEL_LARGE, 216ull*MB }, -}; - -const std::map MEM_REQ_DECODE = { - { MODEL_TINY, 94ull*MB }, - { MODEL_BASE, 96ull*MB }, - { MODEL_SMALL, 98ull*MB }, - { MODEL_MEDIUM, 100ull*MB }, - { MODEL_LARGE, 102ull*MB }, -}; - -const std::map MEM_REQ_DECODE_LAYER = { - { MODEL_TINY, 32ull*MB }, - { MODEL_BASE, 44ull*MB }, - { MODEL_SMALL, 64ull*MB }, - { MODEL_MEDIUM, 84ull*MB }, - { MODEL_LARGE, 110ull*MB }, -}; - -// the memory buffers used to store the model in memory and perform the inference computations -std::vector g_buf_model; -std::vector g_buf_compute; -std::vector g_buf_compute_layer; - -const int SAMPLE_RATE = 16000; -const int N_FFT = 400; -const int N_MEL = 80; -const int HOP_LENGTH = 160; -const int CHUNK_SIZE = 30; // seconds - -struct whisper_mel { - int n_len; - int n_mel; - - std::vector data; -}; - -struct whisper_filters { - int32_t n_mel; - int32_t n_fft; - - std::vector data; -}; - -struct whisper_vocab { - using id = int32_t; - using token = std::string; - - int n_vocab = 51864; - - std::map token_to_id; - std::map id_to_token; - - id token_eot = 50256; - id token_sot = 50257; - id token_prev = 50360; - id token_solm = 50361; // ?? - id token_not = 50362; // no timestamps - id token_beg = 50363; - - // available tasks - const id token_translate = 50358; - const id token_transcribe = 50359; - - bool is_multilingual() const { - return n_vocab == 51865; - } -}; - -struct whisper_result { - whisper_vocab::id id; - int64_t t; -}; - -// command-line parameters -struct whisper_params { - int32_t seed = -1; // RNG seed, not used currently - int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); - - bool verbose = false; - bool translate = false; - bool print_special_tokens = false; - bool no_timestamps = true; - - std::string language = "en"; - std::string model = "models/ggml-base.en.bin"; - std::string fname_inp = "samples/jfk.wav"; -}; - -void whisper_print_usage(int argc, char ** argv, const whisper_params & params); - -bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { - for (int i = 1; i < argc; i++) { - std::string arg = argv[i]; - - if (arg == "-s" || arg == "--seed") { - params.seed = std::stoi(argv[++i]); - } else if (arg == "-t" || arg == "--threads") { - params.n_threads = std::stoi(argv[++i]); - } else if (arg == "-v" || arg == "--verbose") { - params.verbose = true; - } else if (arg == "--translate") { - params.translate = true; - } else if (arg == "-l" || arg == "--language") { - params.language = argv[++i]; - if (g_lang.find(params.language) == g_lang.end()) { - fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); - whisper_print_usage(argc, argv, params); - exit(0); - } - } else if (arg == "-ps" || arg == "--print_special") { - params.print_special_tokens = true; - } else if (arg == "-nt" || arg == "--no_timestamps") { - params.no_timestamps = true; - } else if (arg == "-m" || arg == "--model") { - params.model = argv[++i]; - } else if (arg == "-f" || arg == "--file") { - params.fname_inp = argv[++i]; - } else if (arg == "-h" || arg == "--help") { - whisper_print_usage(argc, argv, params); - exit(0); - } else { - fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); - whisper_print_usage(argc, argv, params); - exit(0); - } - } - - return true; -} - -void whisper_print_usage(int argc, char ** argv, const whisper_params & params) { - fprintf(stderr, "\n"); - fprintf(stderr, "usage: %s [options]\n", argv[0]); - fprintf(stderr, "\n"); - fprintf(stderr, "options:\n"); - fprintf(stderr, " -h, --help show this help message and exit\n"); - fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); - fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); - fprintf(stderr, " -v, --verbose verbose output\n"); - fprintf(stderr, " --translate translate from source language to english\n"); - fprintf(stderr, " -ps, --print_special print special tokens\n"); - fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n"); - fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str()); - fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str()); - fprintf(stderr, " -f FNAME, --file FNAME input WAV file path (default: %s)\n", params.fname_inp.c_str()); - fprintf(stderr, "\n"); -} - - -// medium -// hparams: { -// 'n_mels': 80, -// 'n_vocab': 51864, -// 'n_audio_ctx': 1500, -// 'n_audio_state': 1024, -// 'n_audio_head': 16, -// 'n_audio_layer': 24, -// 'n_text_ctx': 448, -// 'n_text_state': 1024, -// 'n_text_head': 16, -// 'n_text_layer': 24 -// } -// -// default hparams (Whisper tiny) -struct whisper_hparams { - int32_t n_vocab = 51864; - int32_t n_audio_ctx = 1500; - int32_t n_audio_state = 384; - int32_t n_audio_head = 6; - int32_t n_audio_layer = 4; - int32_t n_text_ctx = 448; - int32_t n_text_state = 384; - int32_t n_text_head = 6; - int32_t n_text_layer = 4; - int32_t n_mels = 80; - int32_t f16 = 1; -}; - -// audio encoding layer -struct whisper_layer_encoder { - // encoder.blocks.*.attn_ln - struct ggml_tensor * attn_ln_0_w; - struct ggml_tensor * attn_ln_0_b; - - // encoder.blocks.*.attn.out - struct ggml_tensor * attn_ln_1_w; - struct ggml_tensor * attn_ln_1_b; - - // encoder.blocks.*.attn.query - struct ggml_tensor * attn_q_w; - struct ggml_tensor * attn_q_b; - - // encoder.blocks.*.attn.key - struct ggml_tensor * attn_k_w; - - // encoder.blocks.*.attn.value - struct ggml_tensor * attn_v_w; - struct ggml_tensor * attn_v_b; - - // encoder.blocks.*.mlp_ln - struct ggml_tensor * mlp_ln_w; - struct ggml_tensor * mlp_ln_b; - - // encoder.blocks.*.mlp.0 - struct ggml_tensor * mlp_0_w; - struct ggml_tensor * mlp_0_b; - - // encoder.blocks.*.mlp.2 - struct ggml_tensor * mlp_1_w; - struct ggml_tensor * mlp_1_b; -}; - -// token decoding layer -struct whisper_layer_decoder { - // decoder.blocks.*.attn_ln - struct ggml_tensor * attn_ln_0_w; - struct ggml_tensor * attn_ln_0_b; - - // decoder.blocks.*.attn.out - struct ggml_tensor * attn_ln_1_w; - struct ggml_tensor * attn_ln_1_b; - - // decoder.blocks.*.attn.query - struct ggml_tensor * attn_q_w; - struct ggml_tensor * attn_q_b; - - // decoder.blocks.*.attn.key - struct ggml_tensor * attn_k_w; - - // decoder.blocks.*.attn.value - struct ggml_tensor * attn_v_w; - struct ggml_tensor * attn_v_b; - - // decoder.blocks.*.cross_attn_ln - struct ggml_tensor * cross_attn_ln_0_w; - struct ggml_tensor * cross_attn_ln_0_b; - - // decoder.blocks.*.cross_attn.out - struct ggml_tensor * cross_attn_ln_1_w; - struct ggml_tensor * cross_attn_ln_1_b; - - // decoder.blocks.*.cross_attn.query - struct ggml_tensor * cross_attn_q_w; - struct ggml_tensor * cross_attn_q_b; - - // decoder.blocks.*.cross_attn.key - struct ggml_tensor * cross_attn_k_w; - - // decoder.blocks.*.cross_attn.value - struct ggml_tensor * cross_attn_v_w; - struct ggml_tensor * cross_attn_v_b; - - // decoder.blocks.*.mlp_ln - struct ggml_tensor * mlp_ln_w; - struct ggml_tensor * mlp_ln_b; - - // decoder.blocks.*.mlp.0 - struct ggml_tensor * mlp_0_w; - struct ggml_tensor * mlp_0_b; - - // decoder.blocks.*.mlp.2 - struct ggml_tensor * mlp_1_w; - struct ggml_tensor * mlp_1_b; -}; - -struct whisper_model { - e_model type = MODEL_UNKNOWN; - - whisper_hparams hparams; - whisper_filters filters; - - // encoder.positional_embedding - struct ggml_tensor * e_pe; - - // encoder.conv1 - struct ggml_tensor * e_conv_1_w; - struct ggml_tensor * e_conv_1_b; - - // encoder.conv2 - struct ggml_tensor * e_conv_2_w; - struct ggml_tensor * e_conv_2_b; - - // encoder.ln_post - struct ggml_tensor * e_ln_w; - struct ggml_tensor * e_ln_b; - - // decoder.positional_embedding - struct ggml_tensor * d_pe; // DD - - // decoder.token_embedding - struct ggml_tensor * d_te; // DD - - // decoder.ln - struct ggml_tensor * d_ln_w; // DD - struct ggml_tensor * d_ln_b; // DD - - std::vector layers_encoder; - std::vector layers_decoder; - - // key + value memory - struct ggml_tensor * memory_k; - struct ggml_tensor * memory_v; - - struct ggml_tensor * memory_cross_k; - struct ggml_tensor * memory_cross_v; - - // - struct ggml_context * ctx; - std::map tensors; -}; - -// load the model from a ggml file -// -// file format: -// -// - hparams -// - pre-computed mel filters -// - vocab -// - weights -// -// see the convert-pt-to-ggml.py script for details -// -bool whisper_model_load(const std::string & fname, whisper_model & model, whisper_vocab & vocab) { - printf("%s: loading model from '%s'\n", __func__, fname.c_str()); - - auto fin = std::ifstream(fname, std::ios::binary); - if (!fin) { - fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); - return false; - } - - // verify magic - { - uint32_t magic; - fin.read((char *) &magic, sizeof(magic)); - if (magic != 0x67676d6c) { - fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); - return false; - } - } - - //load hparams - { - auto & hparams = model.hparams; - - fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); - fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx)); - fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state)); - fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head)); - fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer)); - fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx)); - fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state)); - fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head)); - fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer)); - fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels)); - fin.read((char *) &hparams.f16, sizeof(hparams.f16)); - - assert(hparams.n_text_state == hparams.n_audio_state); - - if (hparams.n_audio_layer == 4) { - model.type = e_model::MODEL_TINY; - } - - if (hparams.n_audio_layer == 6) { - model.type = e_model::MODEL_BASE; - } - - if (hparams.n_audio_layer == 12) { - model.type = e_model::MODEL_SMALL; - } - - if (hparams.n_audio_layer == 24) { - model.type = e_model::MODEL_MEDIUM; - } - - if (hparams.n_audio_layer == 32) { - model.type = e_model::MODEL_LARGE; - } - - printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); - printf("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx); - printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state); - printf("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head); - printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer); - printf("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx); - printf("%s: n_text_state = %d\n", __func__, hparams.n_text_state); - printf("%s: n_text_head = %d\n", __func__, hparams.n_text_head); - printf("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer); - printf("%s: n_mels = %d\n", __func__, hparams.n_mels); - printf("%s: f16 = %d\n", __func__, hparams.f16); - printf("%s: type = %d\n", __func__, model.type); - - g_buf_model.resize(MEM_REQ_MODEL.at(model.type)); - g_buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type))); - g_buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type))); - - // this is the total memory required to run the inference - const size_t mem_required = - g_buf_model.size() + - g_buf_compute.size() + - g_buf_compute_layer.size(); - - printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); - } - - // load mel filters - { - auto & filters = model.filters; - - fin.read((char *) &filters.n_mel, sizeof(filters.n_mel)); - fin.read((char *) &filters.n_fft, sizeof(filters.n_fft)); - - filters.data.resize(filters.n_mel * filters.n_fft); - fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float)); - } - - // load vocab - { - int32_t n_vocab = 0; - fin.read((char *) &n_vocab, sizeof(n_vocab)); - - //if (n_vocab != model.hparams.n_vocab) { - // fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", - // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); - // return false; - //} - - std::string word; - for (int i = 0; i < n_vocab; i++) { - uint32_t len; - fin.read((char *) &len, sizeof(len)); - - word.resize(len); - fin.read((char *) word.data(), len); - - vocab.token_to_id[word] = i; - vocab.id_to_token[i] = word; - - //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); - } - - vocab.n_vocab = model.hparams.n_vocab; - if (vocab.is_multilingual()) { - vocab.token_eot++; - vocab.token_sot++; - vocab.token_prev++; - vocab.token_solm++; - vocab.token_not++; - vocab.token_beg++; - } - - if (n_vocab < model.hparams.n_vocab) { - printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab); - for (int i = n_vocab; i < model.hparams.n_vocab; i++) { - if (i > vocab.token_beg) { - word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]"; - } else if (i == vocab.token_eot) { - word = "[_EOT_]"; - } else if (i == vocab.token_sot) { - word = "[_SOT_]"; - } else if (i == vocab.token_prev) { - word = "[_PREV_]"; - } else if (i == vocab.token_not) { - word = "[_NOT_]"; - } else if (i == vocab.token_beg) { - word = "[_BEG_]"; - } else { - word = "[_extra_token_" + std::to_string(i) + "]"; - } - vocab.token_to_id[word] = i; - vocab.id_to_token[i] = word; - } - } - } - - // for the big tensors, we have the option to store the data in 16-bit floats - // in order to save memory and also to speed up the computation - const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32; - - auto & ctx = model.ctx; - - size_t ctx_size = 0; - - { - const auto & hparams = model.hparams; - - const int n_vocab = hparams.n_vocab; - - const int n_audio_ctx = hparams.n_audio_ctx; - const int n_audio_state = hparams.n_audio_state; - const int n_audio_layer = hparams.n_audio_layer; - - const int n_text_ctx = hparams.n_text_ctx; - const int n_text_state = hparams.n_text_state; - const int n_text_layer = hparams.n_text_layer; - - const int n_mels = hparams.n_mels; - - // encoder - { - // TODO: F16 .. maybe not? - ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe; - - ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w - ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b - - ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w - ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b - - ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w; - ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b; - } - - // decoder - { - // TODO: F16 .. maybe not? - ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe; - - ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te; - - ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w; - ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b; - } - - // encoder layers - { - ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w - ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b - - ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w - ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b - - ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w - ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b - - ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w - ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b - - ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w - ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b - - ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w - - ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w - ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b - - ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w - ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b - } - - // decoder layers - { - ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w - ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b - - ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w - ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b - - ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b - - ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w - ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b - // - ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w - ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b - - ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w - ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b - } - - ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k - ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v - - ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k - ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v - - ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead - - printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); - } - - // create the ggml context - { - struct ggml_init_params params = { - .mem_size = g_buf_model.size(), - .mem_buffer = g_buf_model.data(), - }; - - model.ctx = ggml_init(params); - if (!model.ctx) { - fprintf(stderr, "%s: ggml_init() failed\n", __func__); - return false; - } - } - - // prepare memory for the weights - { - const auto & hparams = model.hparams; - - const int n_vocab = hparams.n_vocab; - - const int n_audio_ctx = hparams.n_audio_ctx; - const int n_audio_state = hparams.n_audio_state; - const int n_audio_layer = hparams.n_audio_layer; - - const int n_text_ctx = hparams.n_text_ctx; - const int n_text_state = hparams.n_text_state; - const int n_text_layer = hparams.n_text_layer; - - const int n_mels = hparams.n_mels; - - model.layers_encoder.resize(n_audio_layer); - model.layers_decoder.resize(n_text_layer); - - // encoder - { - model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx); - - model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state); - model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); - - model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state); - model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); - - model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - // map by name - model.tensors["encoder.positional_embedding"] = model.e_pe; - - model.tensors["encoder.conv1.weight"] = model.e_conv_1_w; - model.tensors["encoder.conv1.bias"] = model.e_conv_1_b; - - model.tensors["encoder.conv2.weight"] = model.e_conv_2_w; - model.tensors["encoder.conv2.bias"] = model.e_conv_2_b; - - model.tensors["encoder.ln_post.weight"] = model.e_ln_w; - model.tensors["encoder.ln_post.bias"] = model.e_ln_b; - - for (int i = 0; i < n_audio_layer; ++i) { - auto & layer = model.layers_encoder[i]; - - layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state); - layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state); - - layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state); - layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); - layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); - - layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); - layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); - layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); - - // map by name - model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; - - model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; - - model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; - - model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; - - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; - - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; - - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; - - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; - model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; - } - } - - // decoder - { - model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx); - - model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab); - - model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - // map by name - model.tensors["decoder.positional_embedding"] = model.d_pe; - - model.tensors["decoder.token_embedding.weight"] = model.d_te; - - model.tensors["decoder.ln.weight"] = model.d_ln_w; - model.tensors["decoder.ln.bias"] = model.d_ln_b; - - for (int i = 0; i < n_text_layer; ++i) { - auto & layer = model.layers_decoder[i]; - - layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state); - layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state); - - layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state); - layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - - layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - - layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); - layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); - - // map by name - model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; - - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w; - - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b; - - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w; - model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b; - } - } - } - - // key + value memory - { - const auto & hparams = model.hparams; - - const int n_text_state = hparams.n_text_state; - const int n_text_layer = hparams.n_text_layer; - const int n_text_ctx = hparams.n_text_ctx; - - // key/value memory for the self-attention layer - { - const int n_mem = n_text_layer*n_text_ctx; - const int n_elements = n_text_state*n_mem; - - model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); - model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); - } - - // key/value memory for the cross-attention layer - { - const int n_audio_ctx = hparams.n_audio_ctx; - - const int n_mem = n_text_layer*n_audio_ctx; - const int n_elements = n_text_state*n_mem; - - model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); - model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); - } - - const size_t memory_size = - ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + - ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); - - printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0); - } - - // load weights - { - size_t total_size = 0; - - while (true) { - int32_t n_dims; - int32_t length; - int32_t ftype; - - fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); - fin.read(reinterpret_cast(&length), sizeof(length)); - fin.read(reinterpret_cast(&ftype), sizeof(ftype)); - - if (fin.eof()) { - break; - } - - int32_t nelements = 1; - int32_t ne[3] = { 1, 1, 1 }; - for (int i = 0; i < n_dims; ++i) { - fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); - nelements *= ne[i]; - } - - std::string name(length, 0); - fin.read(&name[0], length); - - if (model.tensors.find(name.data()) == model.tensors.end()) { - fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); - return false; - } - - auto tensor = model.tensors[name.data()]; - if (ggml_nelements(tensor) != nelements) { - fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); - return false; - } - - if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) { - fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n", - __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]); - return false; - } - - const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t); - - if (nelements*bpe != ggml_nbytes(tensor)) { - fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", - __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); - return false; - } - - fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); - - //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); - total_size += ggml_nbytes(tensor); - } - - printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); - } - - fin.close(); - - return true; -} - -// evaluate the encoder -// -// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder -// part of the transformer model and returns the encoded features -// -// - model: the model -// - n_threads: number of threads to use -// - mel_offset: offset in the mel spectrogram (i.e. audio offset) -// - mel_inp: input mel spectrogram -// - features: output encoded features -// -bool whisper_encode( - const whisper_model & model, - const int n_threads, - const int mel_offset, - const whisper_mel & mel_inp, - std::vector & features) { - const auto & hparams = model.hparams; - - const int n_vocab = hparams.n_vocab; - - const int n_ctx = hparams.n_audio_ctx; - const int n_state = hparams.n_audio_state; - const int n_head = hparams.n_audio_head; - const int n_layer = hparams.n_audio_layer; - - const int N = n_ctx; - - const int n_mels = hparams.n_mels; - assert(mel_inp.n_mel == n_mels); - - struct ggml_init_params params = { - .mem_size = g_buf_compute.size(), - .mem_buffer = g_buf_compute.data(), - }; - - struct ggml_context * ctx0 = ggml_init(params); - - struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels); - assert(mel->type == GGML_TYPE_F32); - { - float * dst = (float *) mel->data; - memset(dst, 0, ggml_nbytes(mel)); - - const int i0 = std::min(mel_offset, mel_inp.n_len); - const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len); - - for (int j = 0; j < mel_inp.n_mel; ++j) { - for (int i = i0; i < i1; ++i) { - dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i]; - } - } - } - - struct ggml_tensor * cur; - - // convolution + gelu - { - cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel); - cur = ggml_add(ctx0, - ggml_repeat(ctx0, - model.e_conv_1_b, - cur), - cur); - - cur = ggml_gelu(ctx0, cur); - - cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur); - cur = ggml_add(ctx0, - ggml_repeat(ctx0, - model.e_conv_2_b, - cur), - cur); - - cur = ggml_gelu(ctx0, cur); - } - - cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur)); - - struct ggml_tensor * inpL = cur; - - for (int il = 0; il < n_layer; ++il) { - const auto & layer = model.layers_encoder[il]; - - // create separate context for each layer to reduce memory usage - - struct ggml_init_params paramsL = { - .mem_size = g_buf_compute_layer.size(), - .mem_buffer = g_buf_compute_layer.data(), - }; - - struct ggml_context * ctxL = ggml_init(paramsL); - - // norm - { - cur = ggml_norm(ctxL, inpL); - - // cur = ln_0_w*cur + ln_0_b - cur = ggml_add(ctxL, - ggml_mul(ctxL, - ggml_repeat(ctxL, layer.attn_ln_0_w, cur), - cur), - ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); - } - - // self-attention - { - struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, - layer.attn_q_w, - cur); - - Qcur = ggml_add(ctxL, - ggml_repeat(ctxL, - layer.attn_q_b, - Qcur), - Qcur); - - //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); - - // note: no bias for Key - struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, - layer.attn_k_w, - cur); - - //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, - layer.attn_v_w, - cur); - - Vcur = ggml_add(ctxL, - ggml_repeat(ctxL, - layer.attn_v_b, - Vcur), - Vcur); - - // ------ - -#ifdef USE_FLASH_ATTN - struct ggml_tensor * Q = - ggml_permute(ctxL, - ggml_cpy(ctxL, - Qcur, - ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), - 0, 2, 1, 3); - - struct ggml_tensor * K = - ggml_permute(ctxL, - ggml_cpy(ctxL, - Kcur, - ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), - 0, 2, 1, 3); - - struct ggml_tensor * V = - ggml_cpy(ctxL, - ggml_permute(ctxL, - ggml_reshape_3d(ctxL, - Vcur, - n_state/n_head, n_head, N), - 1, 2, 0, 3), - ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head) - ); - - struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false); -#else - struct ggml_tensor * Q = - ggml_permute(ctxL, - ggml_cpy(ctxL, - Qcur, - ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), - 0, 2, 1, 3); - - struct ggml_tensor * K = - ggml_permute(ctxL, - ggml_cpy(ctxL, - Kcur, - ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), - 0, 2, 1, 3); - - // K * Q - struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); - - struct ggml_tensor * KQ_scaled = - ggml_scale(ctxL, - KQ, - ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) - ); - - struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled); - - //struct ggml_tensor * V_trans = - // ggml_permute(ctxL, - // ggml_cpy(ctxL, - // Vcur, - // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), - // 1, 2, 0, 3); - - //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); - - struct ggml_tensor * V = - ggml_cpy(ctxL, - ggml_permute(ctxL, - ggml_reshape_3d(ctxL, - Vcur, - n_state/n_head, n_head, N), - 0, 2, 1, 3), - ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head) - ); - - struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max); -#endif - - struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); - - cur = ggml_cpy(ctxL, - KQV_merged, - ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); - } - - // projection - { - cur = ggml_mul_mat(ctxL, - layer.attn_ln_1_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.attn_ln_1_b, cur), - cur); - } - - // add the input - cur = ggml_add(ctxL, cur, inpL); - - struct ggml_tensor * inpFF = cur; - - // feed-forward network - { - // norm - { - cur = ggml_norm(ctxL, inpFF); - - // cur = mlp_ln_w*cur + mlp_ln_b - cur = ggml_add(ctxL, - ggml_mul(ctxL, - ggml_repeat(ctxL, layer.mlp_ln_w, cur), - cur), - ggml_repeat(ctxL, layer.mlp_ln_b, cur)); - } - -#ifdef USE_FLASH_FF - cur = ggml_flash_ff(ctxL, - ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)), - layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b); -#else - // fully connected - cur = ggml_mul_mat(ctxL, - layer.mlp_0_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.mlp_0_b, cur), - cur); - - // GELU activation - cur = ggml_gelu(ctxL, cur); - - // projection - cur = ggml_mul_mat(ctxL, - layer.mlp_1_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.mlp_1_b, cur), - cur); -#endif - } - - // output from this layer - struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); - - { - struct ggml_cgraph gf = { .n_threads = n_threads }; - - ggml_build_forward_expand(&gf, inpO); - ggml_graph_compute (ctxL, &gf); - - //ggml_graph_print(&gf); - } - - // TODO: this is a hack to have per-layer computation graphs - need to come up with something better - // input for next layer (inpO -> inpL) - memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); - inpL->op = GGML_OP_NONE; - inpL->src0 = NULL; - inpL->src1 = NULL; - - //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); - - ggml_free(ctxL); - } - - cur = inpL; - - // norm - { - cur = ggml_norm(ctx0, cur); - - // cur = ln_f_g*cur + ln_f_b - cur = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.e_ln_w, cur), - cur), - ggml_repeat(ctx0, model.e_ln_b, cur)); - } - - // run the computation - { - struct ggml_cgraph gf = { .n_threads = n_threads }; - - ggml_build_forward_expand(&gf, cur); - ggml_graph_compute (ctx0, &gf); - - //ggml_graph_print(&gf); - } - - // cur - //{ - // printf("ne0 = %d\n", cur->ne[0]); - // printf("ne1 = %d\n", cur->ne[1]); - // for (int i = 0; i < 10; ++i) { - // printf("%8.4f ", ((float *)(cur->data))[i]); - // } - // printf("... "); - // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) { - // printf("%8.4f ", ((float *)(cur->data))[i]); - // } - // printf("\n"); - //} - - // pre-compute cross-attention memory - { - struct ggml_cgraph gf = { .n_threads = n_threads }; - - // TODO: hack to disconnect the encoded features from the previous graph - cur->op = GGML_OP_NONE; - cur->src0 = NULL; - cur->src1 = NULL; - - for (int il = 0; il < model.hparams.n_text_layer; ++il) { - auto & layer = model.layers_decoder[il]; - - struct ggml_tensor * Kcross = ggml_mul_mat(ctx0, - layer.cross_attn_k_w, - cur); - - Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); - - struct ggml_tensor * Vcross = ggml_mul_mat(ctx0, - layer.cross_attn_v_w, - cur); - - Vcross = ggml_add(ctx0, - ggml_repeat(ctx0, - layer.cross_attn_v_b, - Vcross), - Vcross); - - struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx)); - struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx)); - - ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); - ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); - } - - ggml_graph_compute(ctx0, &gf); - } - - //////////////////////////////////////////////////////////////////////////// - - // output the features - assert(cur->type == GGML_TYPE_F32); - features.resize(cur->ne[0]*cur->ne[1]); - memcpy(features.data(), cur->data, features.size()*sizeof(float)); - - //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0); - - ggml_free(ctx0); - - return true; -} - -// evaluate the decoder -// -// given text prompt + audio features -> predicts the probabilities for the next token -// -// - model: the model -// - n_threads: number of threads to use -// - n_past: prompt length -// - prompt: text prompt -// - logits_out: output logits -// - probs_out: output probabilities -// -bool whisper_decode( - const whisper_model & model, - const int n_threads, - const int n_past, - const std::vector & prompt, - std::vector & logits_out, - std::vector & probs_out) { - const auto & hparams = model.hparams; - - const int n_vocab = hparams.n_vocab; - - const int n_ctx = hparams.n_text_ctx; - const int n_state = hparams.n_text_state; - const int n_head = hparams.n_text_head; - const int n_layer = hparams.n_text_layer; - - const int N = prompt.size(); - const int M = hparams.n_audio_ctx; - - struct ggml_init_params params = { - .mem_size = g_buf_compute.size(), - .mem_buffer = g_buf_compute.data(), - }; - - struct ggml_context * ctx0 = ggml_init(params); - - struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - memcpy(embd->data, prompt.data(), N*ggml_element_size(embd)); - - struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - for (int i = 0; i < N; ++i) { - ((int32_t *) position->data)[i] = n_past + i; - } - - // token encoding + position encoding - struct ggml_tensor * cur = - ggml_add(ctx0, - ggml_get_rows(ctx0, model.d_te, embd), - ggml_get_rows(ctx0, model.d_pe, position)); - - struct ggml_tensor * inpL = cur; - - for (int il = 0; il < n_layer; ++il) { - const auto & layer = model.layers_decoder[il]; - - struct ggml_init_params paramsL = { - .mem_size = g_buf_compute_layer.size(), - .mem_buffer = g_buf_compute_layer.data(), - }; - - struct ggml_context * ctxL = ggml_init(paramsL); - struct ggml_cgraph gf = { .n_threads = n_threads }; - - // norm - { - cur = ggml_norm(ctxL, inpL); - - // cur = ln_0_w*cur + ln_0_b - cur = ggml_add(ctxL, - ggml_mul(ctxL, - ggml_repeat(ctxL, layer.attn_ln_0_w, cur), - cur), - ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); - } - - // self-attention - { - struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, - layer.attn_q_w, - cur); - - Qcur = ggml_add(ctxL, - ggml_repeat(ctxL, - layer.attn_q_b, - Qcur), - Qcur); - - Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); - - // note: no bias for Key - struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, - layer.attn_k_w, - cur); - - Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, - layer.attn_v_w, - cur); - - Vcur = ggml_add(ctxL, - ggml_repeat(ctxL, - layer.attn_v_b, - Vcur), - Vcur); - - // store key and value to memory - { - struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past)); - struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past)); - - ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k)); - ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v)); - } - - // ------ - - struct ggml_tensor * Q = - ggml_permute(ctxL, - ggml_cpy(ctxL, - Qcur, - ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), - 0, 2, 1, 3); - - struct ggml_tensor * K = - ggml_permute(ctxL, - ggml_reshape_3d(ctxL, - ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state), - n_state/n_head, n_head, n_past + N), - 0, 2, 1, 3); - - // K * Q - struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); - - //struct ggml_tensor * KQ_scaled = - // ggml_scale(ctxL, - // KQ, - // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) - // ); - - struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past); - - struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked); - - struct ggml_tensor * V_trans = - ggml_permute(ctxL, - ggml_reshape_3d(ctxL, - ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state), - n_state/n_head, n_head, n_past + N), - 1, 2, 0, 3); - - struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); - - struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); - - cur = ggml_cpy(ctxL, - KQV_merged, - ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); - } - - { - cur = ggml_mul_mat(ctxL, - layer.attn_ln_1_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.attn_ln_1_b, cur), - cur); - } - - // add the input - struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL); - - // norm - { - cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here - - // cur = ln_0_w*cur + ln_0_b - cur = ggml_add(ctxL, - ggml_mul(ctxL, - ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur), - cur), - ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur)); - } - - // cross-attention - { - struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, - layer.cross_attn_q_w, - cur); - - Qcur = ggml_add(ctxL, - ggml_repeat(ctxL, - layer.cross_attn_q_b, - Qcur), - Qcur); - - Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); - - // Kcross is already scaled - struct ggml_tensor * Kcross = - ggml_reshape_3d(ctxL, - ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state), - n_state/n_head, n_head, M); - - struct ggml_tensor * Vcross = - ggml_reshape_3d(ctxL, - ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state), - n_state/n_head, n_head, M); - - // ------ - - struct ggml_tensor * Q = - ggml_permute(ctxL, - ggml_cpy(ctxL, - Qcur, - ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), - 0, 2, 1, 3); - - struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3); - - // K * Q - struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); - - //struct ggml_tensor * KQ_scaled = - // ggml_scale(ctxL, - // KQ, - // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) - // ); - - // no masking for cross-attention - //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past); - - struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ); - - struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3); - - struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); - - struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); - - // cur = KQV_merged.contiguous().view(n_state, N) - cur = ggml_cpy(ctxL, - KQV_merged, - ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); - } - - // projection - { - cur = ggml_mul_mat(ctxL, - layer.cross_attn_ln_1_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur), - cur); - } - - // add the input - cur = ggml_add(ctxL, cur, inpCA); - - struct ggml_tensor * inpFF = cur; - - // feed-forward network - { - // norm - { - cur = ggml_norm(ctxL, inpFF); - - // cur = mlp_ln_w*cur + mlp_ln_b - cur = ggml_add(ctxL, - ggml_mul(ctxL, - ggml_repeat(ctxL, layer.mlp_ln_w, cur), - cur), - ggml_repeat(ctxL, layer.mlp_ln_b, cur)); - } - - // fully connected - cur = ggml_mul_mat(ctxL, - layer.mlp_0_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.mlp_0_b, cur), - cur); - - // GELU activation - cur = ggml_gelu(ctxL, cur); - - // projection - cur = ggml_mul_mat(ctxL, - layer.mlp_1_w, - cur); - - cur = ggml_add(ctxL, - ggml_repeat(ctxL, layer.mlp_1_b, cur), - cur); - } - - // output from this layer - struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); - - { - ggml_build_forward_expand(&gf, inpO); - ggml_graph_compute (ctxL, &gf); - - //ggml_graph_print(&gf); - } - - // TODO: this is a hack to have per-layer computation graphs - need to come up with something better - // input for next layer (inpO -> inpL) - memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); - inpL->op = GGML_OP_NONE; - inpL->src0 = NULL; - inpL->src1 = NULL; - - if (N > 1) { - //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); - } - - ggml_free(ctxL); - } - - cur = inpL; - - // norm - { - cur = ggml_norm(ctx0, cur); - - cur = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.d_ln_w, cur), - cur), - ggml_repeat(ctx0, model.d_ln_b, cur)); - } - - struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur); - - // logits -> probs - cur = ggml_dup(ctx0, logits); - cur = ggml_soft_max(ctx0, cur); // in-place - - // run the computation - { - struct ggml_cgraph gf = { .n_threads = n_threads }; - - ggml_build_forward_expand(&gf, cur); - ggml_graph_compute (ctx0, &gf); - } - - logits_out.resize(N*n_vocab); - memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab); - - probs_out.resize(N*n_vocab); - memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab); - - if (N > 1) { - //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N; - //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token); - //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx); - } - - ggml_free(ctx0); - - return true; -} - -// the most basic sampling scheme - select the top token -// TODO: beam search -// TODO: temperature -whisper_vocab::id whisper_sample_best( - const whisper_vocab & vocab, - const float * probs, bool need_timestamp) { - int n_logits = vocab.id_to_token.size(); - - std::vector> probs_id; - probs_id.reserve(n_logits); - - for (int i = 0; i < n_logits; i++) { - probs_id.push_back(std::make_pair(probs[i], i)); - } - - const int top_k = 4; - - // find the top K tokens - std::partial_sort( - probs_id.begin(), - probs_id.begin() + top_k, probs_id.end(), - [](const std::pair & a, const std::pair & b) { - return a.first > b.first; - }); - - probs_id.resize(top_k); - - //printf("\n"); - //for (int i = 0; i < (int) probs_id.size(); i++) { - // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); - //} - - if (need_timestamp) { - // at the end of the 30-second audio segment, we start giving preference to time tokens - for (int i = 0; i < top_k; i++) { - if (probs_id[i].second > vocab.token_beg + 1300 && probs_id[i].first > 0.01*probs_id[0].first) { - return probs_id[i].second; - } - } - } - - int res = 0; - while ((probs_id[res].second == vocab.token_sot || - probs_id[res].second == vocab.token_solm || - probs_id[res].second == vocab.token_not) && - res < (int) probs_id.size() - 1) { - res++; - } - - return probs_id[res].second; -} - -// samples only from the timestamps tokens -whisper_vocab::id whisper_sample_timestamp( - const whisper_vocab & vocab, - const float * probs) { - int n_logits = vocab.id_to_token.size(); - - std::vector> probs_id; - probs_id.reserve(n_logits); - - for (int i = vocab.token_beg + 1; i < n_logits; i++) { - probs_id.push_back(std::make_pair(probs[i], i)); - } - - const int top_k = 10; - - // find the top K tokens - std::partial_sort( - probs_id.begin(), - probs_id.begin() + top_k, probs_id.end(), - [](const std::pair & a, const std::pair & b) { - return a.first > b.first; - }); - - probs_id.resize(top_k); - - //printf("\n"); - //for (int i = 0; i < (int) probs_id.size(); i++) { - // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); - //} - - return probs_id[0].second; -} - -// naive Discrete Fourier Transform -// input is real-valued -// output is complex-valued -void dft(const std::vector & in, std::vector & out) { - int N = in.size(); - - out.resize(N*2); +// third-party utilities +// use your favorite implementations +#define DR_WAV_IMPLEMENTATION +#include "dr_wav.h" - for (int k = 0; k < N; k++) { - float re = 0; - float im = 0; +#include +#include - for (int n = 0; n < N; n++) { - float angle = 2*M_PI*k*n/N; - re += in[n]*cos(angle); - im -= in[n]*sin(angle); - } +#include +#include +#include +#include +#include - out[k*2 + 0] = re; - out[k*2 + 1] = im; - } +int64_t get_time_us() { + return std::chrono::duration_cast( + std::chrono::high_resolution_clock::now().time_since_epoch()).count(); } -// Cooley-Tukey FFT -// poor man's implmentation - use something better -// input is real-valued -// output is complex-valued -void fft(const std::vector & in, std::vector & out) { - out.resize(in.size()*2); - - int N = in.size(); - - if (N == 1) { - out[0] = in[0]; - out[1] = 0; - return; - } - - if (N%2 == 1) { - dft(in, out); - return; - } - - std::vector even; - std::vector odd; - - for (int i = 0; i < N; i++) { - if (i % 2 == 0) { - even.push_back(in[i]); - } else { - odd.push_back(in[i]); - } - } - - std::vector even_fft; - std::vector odd_fft; - - fft(even, even_fft); - fft(odd, odd_fft); - - for (int k = 0; k < N/2; k++) { - float theta = 2*M_PI*k/N; - - float re = cos(theta); - float im = -sin(theta); - - float re_odd = odd_fft[2*k + 0]; - float im_odd = odd_fft[2*k + 1]; +// 500 -> 00:05.000 +// 6000 -> 01:00.000 +std::string to_timestamp(int64_t t) { + int64_t sec = t/100; + int64_t msec = t - sec*100; + int64_t min = sec/60; + sec = sec - min*60; - out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd; - out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd; + char buf[32]; + snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec); - out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd; - out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd; - } + return std::string(buf); } -// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124 -bool log_mel_spectrogram( - const std::vector sf32, - const int sample_rate, - const int fft_size, - const int fft_step, - const int n_mel, - const int n_threads, - const whisper_filters & filters, - whisper_mel & mel) { - const int n_sample = sf32.size(); - const float * samples = sf32.data(); - - // Hanning window - std::vector hann; - hann.resize(fft_size); - for (int i = 0; i < fft_size; i++) { - hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size))); - } - - mel.n_mel = n_mel; - mel.n_len = (n_sample)/fft_step; - mel.data.resize(mel.n_mel*mel.n_len); - - const int n_fft = 1 + fft_size/2; - - //printf("%s: n_sample = %d, n_len = %d\n", __func__, n_sample, mel.n_len); - //printf("%s: recording length: %f s\n", __func__, (float) n_sample/sample_rate); - - std::vector workers(n_threads); - for (int iw = 0; iw < n_threads; ++iw) { - workers[iw] = std::thread([&](int ith) { - std::vector fft_in; - fft_in.resize(fft_size); - for (int i = 0; i < fft_size; i++) { - fft_in[i] = 0.0; - } - - std::vector fft_out; - fft_out.resize(2*fft_size); - - for (int i = ith; i < mel.n_len; i += n_threads) { - const int offset = i*fft_step; - - // apply Hanning window - for (int j = 0; j < fft_size; j++) { - if (offset + j < n_sample) { - fft_in[j] = hann[j]*samples[offset + j]; - } else { - fft_in[j] = 0.0; - } - } +struct whisper_result { + whisper_token id; + int64_t t; +}; - // FFT -> mag^2 - fft(fft_in, fft_out); +// command-line parameters +struct whisper_params { + int32_t seed = -1; // RNG seed, not used currently + int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); - for (int j = 0; j < fft_size; j++) { - fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]); - } - for (int j = 1; j < fft_size/2; j++) { - fft_out[j] += fft_out[fft_size - j]; - } + bool verbose = false; + bool translate = false; + bool print_special_tokens = false; + bool no_timestamps = true; - // mel spectrogram - for (int j = 0; j < mel.n_mel; j++) { - double sum = 0.0; + std::string language = "en"; + std::string model = "models/ggml-base.en.bin"; + std::string fname_inp = "samples/jfk.wav"; +}; - for (int k = 0; k < n_fft; k++) { - sum += fft_out[k]*filters.data[j*n_fft + k]; - } - if (sum < 1e-10) { - sum = 1e-10; - } +void whisper_print_usage(int argc, char ** argv, const whisper_params & params); - sum = log10(sum); +bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { + for (int i = 1; i < argc; i++) { + std::string arg = argv[i]; - mel.data[j*mel.n_len + i] = sum; - } + if (arg == "-s" || arg == "--seed") { + params.seed = std::stoi(argv[++i]); + } else if (arg == "-t" || arg == "--threads") { + params.n_threads = std::stoi(argv[++i]); + } else if (arg == "-v" || arg == "--verbose") { + params.verbose = true; + } else if (arg == "--translate") { + params.translate = true; + } else if (arg == "-l" || arg == "--language") { + params.language = argv[++i]; + if (whisper_lang_id(params.language.c_str()) == -1) { + fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); + whisper_print_usage(argc, argv, params); + exit(0); } - }, iw); - } - - for (int iw = 0; iw < n_threads; ++iw) { - workers[iw].join(); - } - - // clamping and normalization - double mmax = -1e20; - for (int i = 0; i < mel.n_mel*mel.n_len; i++) { - if (mel.data[i] > mmax) { - mmax = mel.data[i]; - } - } - - mmax -= 8.0; - - for (int i = 0; i < mel.n_mel*mel.n_len; i++) { - if (mel.data[i] < mmax) { - mel.data[i] = mmax; + } else if (arg == "-ps" || arg == "--print_special") { + params.print_special_tokens = true; + } else if (arg == "-nt" || arg == "--no_timestamps") { + params.no_timestamps = true; + } else if (arg == "-m" || arg == "--model") { + params.model = argv[++i]; + } else if (arg == "-f" || arg == "--file") { + params.fname_inp = argv[++i]; + } else if (arg == "-h" || arg == "--help") { + whisper_print_usage(argc, argv, params); + exit(0); + } else { + fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); + whisper_print_usage(argc, argv, params); + exit(0); } - - mel.data[i] = (mel.data[i] + 4.0)/4.0; } return true; } -// 500 -> 00:05.000 -// 6000 -> 01:00.000 -std::string to_timestamp(int64_t t) { - int64_t sec = t/100; - int64_t msec = t - sec*100; - int64_t min = sec/60; - sec = sec - min*60; - - char buf[32]; - snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec); - - return std::string(buf); +void whisper_print_usage(int argc, char ** argv, const whisper_params & params) { + fprintf(stderr, "\n"); + fprintf(stderr, "usage: %s [options]\n", argv[0]); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); + fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); + fprintf(stderr, " -v, --verbose verbose output\n"); + fprintf(stderr, " --translate translate from source language to english\n"); + fprintf(stderr, " -ps, --print_special print special tokens\n"); + fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n"); + fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str()); + fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str()); + fprintf(stderr, " -f FNAME, --file FNAME input WAV file path (default: %s)\n", params.fname_inp.c_str()); + fprintf(stderr, "\n"); } // @@ -2183,7 +186,7 @@ bool audio_sdl_init(const int capture_id) { /////////////////////////// int main(int argc, char ** argv) { - const int64_t t_main_start_us = ggml_time_us(); + const int64_t t_main_start_us = get_time_us(); whisper_params params; @@ -2202,31 +205,9 @@ int main(int argc, char ** argv) { return 1; } - // model loading + // whisper init - //printf("%s: seed = %d\n", __func__, params.seed); - - int64_t t_load_us = 0; - int64_t t_mel_us = 0; - int64_t t_sample_us = 0; - int64_t t_encode_us = 0; - int64_t t_decode_us = 0; - - whisper_vocab vocab; - whisper_model model; - - // load the model - { - const int64_t t_start_us = ggml_time_us(); - - if (!whisper_model_load(params.model, model, vocab)) { - fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); - whisper_print_usage(argc, argv, {}); - return 1; - } - - t_load_us = ggml_time_us() - t_start_us; - } + struct whisper_context * ctx = whisper_init(params.model.c_str()); const int n_samples_30s = 30*SAMPLE_RATE; std::vector pcmf32(n_samples_30s, 0.0f); @@ -2235,7 +216,7 @@ int main(int argc, char ** argv) { // print some info about the processing { printf("\n"); - if (!vocab.is_multilingual()) { + if (!whisper_is_multilingual(ctx)) { if (params.language != "en" || params.translate) { params.language = "en"; params.translate = false; @@ -2244,7 +225,7 @@ int main(int argc, char ** argv) { } printf("%s: processing %d samples (%.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n", __func__, int(pcmf32.size()), float(pcmf32.size())/SAMPLE_RATE, params.n_threads, - g_lang.at(params.language).second.c_str(), + params.language.c_str(), params.translate ? "translate" : "transcribe", params.no_timestamps ? 0 : 1); printf("\n"); @@ -2291,26 +272,22 @@ int main(int argc, char ** argv) { pcmf32_old = pcmf32; // compute log mel spectrogram - whisper_mel mel_inp; - { - const int64_t t_start_us = ggml_time_us(); - - log_mel_spectrogram(pcmf32, SAMPLE_RATE, N_FFT, HOP_LENGTH, N_MEL, params.n_threads, model.filters, mel_inp); - - t_mel_us = ggml_time_us() - t_start_us; + if (whisper_pcm_to_mel(ctx, pcmf32.data(), pcmf32.size(), params.n_threads) != 0) { + fprintf(stderr, "%s: failed to compute log mel spectrogram\n", argv[0]); + return 6; } // the accumulated text context so far - std::vector prompt_past = { }; + std::vector prompt_past = { }; // these tokens determine the task that will be performed - std::vector prompt_init = { vocab.token_sot }; - if (vocab.is_multilingual()) { - prompt_init.push_back(vocab.token_sot + 1 + g_lang.at(params.language).first); + std::vector prompt_init = { whisper_token_sot(ctx) }; + if (whisper_is_multilingual(ctx)) { + prompt_init.push_back(whisper_token_sot(ctx) + 1 + whisper_lang_id(params.language.c_str())); if (params.translate) { - prompt_init.push_back(vocab.token_translate); + prompt_init.push_back(whisper_token_translate()); } else { - prompt_init.push_back(vocab.token_transcribe); + prompt_init.push_back(whisper_token_transcribe()); } } @@ -2320,35 +297,25 @@ int main(int argc, char ** argv) { // main loop int seek = 0; while (true) { - if (seek >= mel_inp.n_len) { + if (seek >= whisper_n_len(ctx)) { break; } // encode audio features starting at offset seek - std::vector features; - { - const int64_t t_start_us = ggml_time_us(); - - if (!whisper_encode(model, params.n_threads, seek, mel_inp, features)) { - fprintf(stderr, "%s: failed to eval\n", __func__); - return 1; - } - - t_encode_us += ggml_time_us() - t_start_us; + if (whisper_encode(ctx, seek, params.n_threads) != 0) { + fprintf(stderr, "%s: failed to encode\n", __func__); + return 7; } - std::vector probs; - std::vector logits; - - std::vector prompt; + std::vector prompt; int n_past = 0; // if we have already generated some text, use it as a prompt to condition the next generation if (prompt_past.size() > 0) { - int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size())); + int n_take = std::min(whisper_n_text_ctx(ctx)/2, int(prompt_past.size())); - prompt = { vocab.token_prev }; + prompt = { whisper_token_prev(ctx) }; prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end()); prompt_past.clear(); @@ -2359,7 +326,7 @@ int main(int argc, char ** argv) { bool done = false; int seek_delta = 100*CHUNK_SIZE; - whisper_vocab::id last_id = 0; + whisper_token last_id = 0; // print the prompt //printf("\n\n"); @@ -2372,17 +339,10 @@ int main(int argc, char ** argv) { int result_len = 0; std::vector result_cur; - for (int i = 0; i < model.hparams.n_text_ctx/2 - 4; ++i) { - // decode - if (prompt.size() > 0) { - const int64_t t_start_us = ggml_time_us(); - - if (!whisper_decode(model, params.n_threads, n_past, prompt, logits, probs)) { - fprintf(stderr, "%s: failed to eval\n", __func__); - return 1; - } - - t_decode_us += ggml_time_us() - t_start_us; + for (int i = 0; i < whisper_n_text_ctx(ctx)/2 - 4; ++i) { + if (whisper_decode(ctx, prompt.data(), prompt.size(), n_past, params.n_threads) != 0) { + fprintf(stderr, "%s: failed to decode\n", __func__); + return 8; } n_past += prompt.size(); @@ -2396,37 +356,31 @@ int main(int argc, char ** argv) { // feel free to experiment! // { - const int n_vocab = model.hparams.n_vocab; - - whisper_vocab::id id = 0; - whisper_vocab::id tid = vocab.token_beg; - - { - const int64_t t_start_sample_us = ggml_time_us(); + const int n_vocab = whisper_n_vocab(ctx); - id = whisper_sample_best(vocab, probs.data() + (probs.size() - n_vocab), result_len == 0); - if (i > 0) { - tid = whisper_sample_timestamp(vocab, probs.data() + (probs.size() - n_vocab)); - } + whisper_token id = 0; + whisper_token tid = whisper_token_beg(ctx); - t_sample_us += ggml_time_us() - t_start_sample_us; + id = whisper_sample_best(ctx, result_len == 0); + if (i > 0) { + tid = whisper_sample_timestamp(ctx); } // update sliding window - if (id > vocab.token_beg) { - seek_delta = 2*(id - vocab.token_beg); + if (id > whisper_token_beg(ctx)) { + seek_delta = 2*(id - whisper_token_beg(ctx)); result_len = i + 1; } last_id = id; // add it to the context prompt.push_back(id); - result_cur.push_back({ id, seek + 2*(tid - vocab.token_beg) }); + result_cur.push_back({ id, seek + 2*(tid - whisper_token_beg(ctx)) }); //printf("%s: %s\n", __func__, vocab.id_to_token[id].c_str()); // end of text token - if (id == vocab.token_eot) { + if (id == whisper_token_eot(ctx)) { break; } } @@ -2449,11 +403,11 @@ int main(int argc, char ** argv) { std::string text = ""; for (int i = 0; i < result_cur.size(); i++) { - if (params.print_special_tokens == false && result_cur[i].id >= vocab.token_eot) { + if (params.print_special_tokens == false && result_cur[i].id >= whisper_token_eot(ctx)) { } else { - text += vocab.id_to_token[result_cur[i].id]; + text += whisper_token_to_str(ctx, result_cur[i].id); } - if (result_cur[i].id > vocab.token_beg) { + if (result_cur[i].id > whisper_token_beg(ctx)) { const auto t1 = result_cur[i].t; if (!text.empty()) { if (params.no_timestamps) { @@ -2464,7 +418,7 @@ int main(int argc, char ** argv) { } } text = ""; - while (result_cur[i].id > vocab.token_beg && i < result_cur.size()) { + while (result_cur[i].id > whisper_token_beg(ctx) && i < result_cur.size()) { i++; } i--; @@ -2481,45 +435,8 @@ int main(int argc, char ** argv) { } } - // WIP: attempt for per-token timestamps - //if (!params.no_timestamps && result_all.size() > 0) { - // const int64_t dt = 500; // 5 second intervals - - // int i0 = 0; - - // int64_t t0 = result_all[0].t; - // int64_t t1 = t0; - - // printf("\n\n"); - // for (int i = 0; i < result_all.size(); ++i) { - // printf("'%s' -> %lld\n", vocab.id_to_token[result_all[i].id].c_str(), result_all[i].t); - // if (result_all[i].t - t0 > dt) { - // t1 = result_all[i - 1].t; - // printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str()); - // for (int j = i0; j < i; ++j) { - // printf("%s", vocab.id_to_token.at(result_all[j].id).c_str()); - // } - // printf("\n"); - // i0 = i; - // t0 = result_all[i].t; - // } - // } - //} - - // report timing - { - const int64_t t_main_end_us = ggml_time_us(); - - printf("\n\n"); - printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); - printf("%s: mel time = %8.2f ms\n", __func__, t_mel_us/1000.0f); - printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); - printf("%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, t_encode_us/1000.0f, t_encode_us/1000.0f/model.hparams.n_audio_layer); - printf("%s: decode time = %8.2f ms\n", __func__, t_decode_us/1000.0f); - printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); - } - - ggml_free(model.ctx); + whisper_print_timings(ctx); + whisper_free(ctx); return 0; } diff --git a/whisper.cpp b/whisper.cpp new file mode 100644 index 0000000..c57ca60 --- /dev/null +++ b/whisper.cpp @@ -0,0 +1,2221 @@ +#include "whisper.h" + +#include "ggml.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define USE_FLASH_ATTN +#define USE_FLASH_FF + +// available whisper models +enum e_model { + MODEL_UNKNOWN, + MODEL_TINY, + MODEL_BASE, + MODEL_SMALL, + MODEL_MEDIUM, + MODEL_LARGE, +}; + +static const std::map> g_lang = { + { "en", { 0, "english", } }, + { "zh", { 1, "chinese", } }, + { "de", { 2, "german", } }, + { "es", { 3, "spanish", } }, + { "ru", { 4, "russian", } }, + { "ko", { 5, "korean", } }, + { "fr", { 6, "french", } }, + { "ja", { 7, "japanese", } }, + { "pt", { 8, "portuguese", } }, + { "tr", { 9, "turkish", } }, + { "pl", { 10, "polish", } }, + { "ca", { 11, "catalan", } }, + { "nl", { 12, "dutch", } }, + { "ar", { 13, "arabic", } }, + { "sv", { 14, "swedish", } }, + { "it", { 15, "italian", } }, + { "id", { 16, "indonesian", } }, + { "hi", { 17, "hindi", } }, + { "fi", { 18, "finnish", } }, + { "vi", { 19, "vietnamese", } }, + { "iw", { 20, "hebrew", } }, + { "uk", { 21, "ukrainian", } }, + { "el", { 22, "greek", } }, + { "ms", { 23, "malay", } }, + { "cs", { 24, "czech", } }, + { "ro", { 25, "romanian", } }, + { "da", { 26, "danish", } }, + { "hu", { 27, "hungarian", } }, + { "ta", { 28, "tamil", } }, + { "no", { 29, "norwegian", } }, + { "th", { 30, "thai", } }, + { "ur", { 31, "urdu", } }, + { "hr", { 32, "croatian", } }, + { "bg", { 33, "bulgarian", } }, + { "lt", { 34, "lithuanian", } }, + { "la", { 35, "latin", } }, + { "mi", { 36, "maori", } }, + { "ml", { 37, "malayalam", } }, + { "cy", { 38, "welsh", } }, + { "sk", { 39, "slovak", } }, + { "te", { 40, "telugu", } }, + { "fa", { 41, "persian", } }, + { "lv", { 42, "latvian", } }, + { "bn", { 43, "bengali", } }, + { "sr", { 44, "serbian", } }, + { "az", { 45, "azerbaijani", } }, + { "sl", { 46, "slovenian", } }, + { "kn", { 47, "kannada", } }, + { "et", { 48, "estonian", } }, + { "mk", { 49, "macedonian", } }, + { "br", { 50, "breton", } }, + { "eu", { 51, "basque", } }, + { "is", { 52, "icelandic", } }, + { "hy", { 53, "armenian", } }, + { "ne", { 54, "nepali", } }, + { "mn", { 55, "mongolian", } }, + { "bs", { 56, "bosnian", } }, + { "kk", { 57, "kazakh", } }, + { "sq", { 58, "albanian", } }, + { "sw", { 59, "swahili", } }, + { "gl", { 60, "galician", } }, + { "mr", { 61, "marathi", } }, + { "pa", { 62, "punjabi", } }, + { "si", { 63, "sinhala", } }, + { "km", { 64, "khmer", } }, + { "sn", { 65, "shona", } }, + { "yo", { 66, "yoruba", } }, + { "so", { 67, "somali", } }, + { "af", { 68, "afrikaans", } }, + { "oc", { 69, "occitan", } }, + { "ka", { 70, "georgian", } }, + { "be", { 71, "belarusian", } }, + { "tg", { 72, "tajik", } }, + { "sd", { 73, "sindhi", } }, + { "gu", { 74, "gujarati", } }, + { "am", { 75, "amharic", } }, + { "yi", { 76, "yiddish", } }, + { "lo", { 77, "lao", } }, + { "uz", { 78, "uzbek", } }, + { "fo", { 79, "faroese", } }, + { "ht", { 80, "haitian creole", } }, + { "ps", { 81, "pashto", } }, + { "tk", { 82, "turkmen", } }, + { "nn", { 83, "nynorsk", } }, + { "mt", { 84, "maltese", } }, + { "sa", { 85, "sanskrit", } }, + { "lb", { 86, "luxembourgish", } }, + { "my", { 87, "myanmar", } }, + { "bo", { 88, "tibetan", } }, + { "tl", { 89, "tagalog", } }, + { "mg", { 90, "malagasy", } }, + { "as", { 91, "assamese", } }, + { "tt", { 92, "tatar", } }, + { "haw", { 93, "hawaiian", } }, + { "ln", { 94, "lingala", } }, + { "ha", { 95, "hausa", } }, + { "ba", { 96, "bashkir", } }, + { "jw", { 97, "javanese", } }, + { "su", { 98, "sundanese", } }, +}; + +static const size_t MB = 1024*1024; + +static const std::map MEM_REQ_MODEL = { + { MODEL_TINY, 86ull*MB }, + { MODEL_BASE, 165ull*MB }, + { MODEL_SMALL, 540ull*MB }, + { MODEL_MEDIUM, 1650ull*MB }, + { MODEL_LARGE, 3260ull*MB }, +}; + +static const std::map MEM_REQ_ENCODE = { + { MODEL_TINY, 80ull*MB }, + { MODEL_BASE, 128ull*MB }, + { MODEL_SMALL, 300ull*MB }, + { MODEL_MEDIUM, 680ull*MB }, + { MODEL_LARGE, 1100ull*MB }, +}; + +static const std::map MEM_REQ_ENCODE_LAYER = { + { MODEL_TINY, 64ull*MB }, + { MODEL_BASE, 84ull*MB }, + { MODEL_SMALL, 128ull*MB }, + { MODEL_MEDIUM, 172ull*MB }, + { MODEL_LARGE, 216ull*MB }, +}; + +static const std::map MEM_REQ_DECODE = { + { MODEL_TINY, 94ull*MB }, + { MODEL_BASE, 96ull*MB }, + { MODEL_SMALL, 98ull*MB }, + { MODEL_MEDIUM, 100ull*MB }, + { MODEL_LARGE, 102ull*MB }, +}; + +static const std::map MEM_REQ_DECODE_LAYER = { + { MODEL_TINY, 32ull*MB }, + { MODEL_BASE, 44ull*MB }, + { MODEL_SMALL, 64ull*MB }, + { MODEL_MEDIUM, 84ull*MB }, + { MODEL_LARGE, 110ull*MB }, +}; + +struct whisper_mel { + int n_len; + int n_mel; + + std::vector data; +}; + +struct whisper_filters { + int32_t n_mel; + int32_t n_fft; + + std::vector data; +}; + +struct whisper_vocab { + using id = int32_t; + using token = std::string; + + int n_vocab = 51864; + + std::map token_to_id; + std::map id_to_token; + + id token_eot = 50256; + id token_sot = 50257; + id token_prev = 50360; + id token_solm = 50361; // ?? + id token_not = 50362; // no timestamps + id token_beg = 50363; + + // available tasks + static const id token_translate = 50358; + static const id token_transcribe = 50359; + + bool is_multilingual() const { + return n_vocab == 51865; + } +}; + +struct whisper_result { + whisper_vocab::id id; + int64_t t; +}; + +// medium +// hparams: { +// 'n_mels': 80, +// 'n_vocab': 51864, +// 'n_audio_ctx': 1500, +// 'n_audio_state': 1024, +// 'n_audio_head': 16, +// 'n_audio_layer': 24, +// 'n_text_ctx': 448, +// 'n_text_state': 1024, +// 'n_text_head': 16, +// 'n_text_layer': 24 +// } +// +// default hparams (Whisper tiny) +struct whisper_hparams { + int32_t n_vocab = 51864; + int32_t n_audio_ctx = 1500; + int32_t n_audio_state = 384; + int32_t n_audio_head = 6; + int32_t n_audio_layer = 4; + int32_t n_text_ctx = 448; + int32_t n_text_state = 384; + int32_t n_text_head = 6; + int32_t n_text_layer = 4; + int32_t n_mels = 80; + int32_t f16 = 1; +}; + +// audio encoding layer +struct whisper_layer_encoder { + // encoder.blocks.*.attn_ln + struct ggml_tensor * attn_ln_0_w; + struct ggml_tensor * attn_ln_0_b; + + // encoder.blocks.*.attn.out + struct ggml_tensor * attn_ln_1_w; + struct ggml_tensor * attn_ln_1_b; + + // encoder.blocks.*.attn.query + struct ggml_tensor * attn_q_w; + struct ggml_tensor * attn_q_b; + + // encoder.blocks.*.attn.key + struct ggml_tensor * attn_k_w; + + // encoder.blocks.*.attn.value + struct ggml_tensor * attn_v_w; + struct ggml_tensor * attn_v_b; + + // encoder.blocks.*.mlp_ln + struct ggml_tensor * mlp_ln_w; + struct ggml_tensor * mlp_ln_b; + + // encoder.blocks.*.mlp.0 + struct ggml_tensor * mlp_0_w; + struct ggml_tensor * mlp_0_b; + + // encoder.blocks.*.mlp.2 + struct ggml_tensor * mlp_1_w; + struct ggml_tensor * mlp_1_b; +}; + +// token decoding layer +struct whisper_layer_decoder { + // decoder.blocks.*.attn_ln + struct ggml_tensor * attn_ln_0_w; + struct ggml_tensor * attn_ln_0_b; + + // decoder.blocks.*.attn.out + struct ggml_tensor * attn_ln_1_w; + struct ggml_tensor * attn_ln_1_b; + + // decoder.blocks.*.attn.query + struct ggml_tensor * attn_q_w; + struct ggml_tensor * attn_q_b; + + // decoder.blocks.*.attn.key + struct ggml_tensor * attn_k_w; + + // decoder.blocks.*.attn.value + struct ggml_tensor * attn_v_w; + struct ggml_tensor * attn_v_b; + + // decoder.blocks.*.cross_attn_ln + struct ggml_tensor * cross_attn_ln_0_w; + struct ggml_tensor * cross_attn_ln_0_b; + + // decoder.blocks.*.cross_attn.out + struct ggml_tensor * cross_attn_ln_1_w; + struct ggml_tensor * cross_attn_ln_1_b; + + // decoder.blocks.*.cross_attn.query + struct ggml_tensor * cross_attn_q_w; + struct ggml_tensor * cross_attn_q_b; + + // decoder.blocks.*.cross_attn.key + struct ggml_tensor * cross_attn_k_w; + + // decoder.blocks.*.cross_attn.value + struct ggml_tensor * cross_attn_v_w; + struct ggml_tensor * cross_attn_v_b; + + // decoder.blocks.*.mlp_ln + struct ggml_tensor * mlp_ln_w; + struct ggml_tensor * mlp_ln_b; + + // decoder.blocks.*.mlp.0 + struct ggml_tensor * mlp_0_w; + struct ggml_tensor * mlp_0_b; + + // decoder.blocks.*.mlp.2 + struct ggml_tensor * mlp_1_w; + struct ggml_tensor * mlp_1_b; +}; + +struct whisper_model { + e_model type = MODEL_UNKNOWN; + + whisper_hparams hparams; + whisper_filters filters; + + // encoder.positional_embedding + struct ggml_tensor * e_pe; + + // encoder.conv1 + struct ggml_tensor * e_conv_1_w; + struct ggml_tensor * e_conv_1_b; + + // encoder.conv2 + struct ggml_tensor * e_conv_2_w; + struct ggml_tensor * e_conv_2_b; + + // encoder.ln_post + struct ggml_tensor * e_ln_w; + struct ggml_tensor * e_ln_b; + + // decoder.positional_embedding + struct ggml_tensor * d_pe; // DD + + // decoder.token_embedding + struct ggml_tensor * d_te; // DD + + // decoder.ln + struct ggml_tensor * d_ln_w; // DD + struct ggml_tensor * d_ln_b; // DD + + std::vector layers_encoder; + std::vector layers_decoder; + + // key + value memory + struct ggml_tensor * memory_k; + struct ggml_tensor * memory_v; + + struct ggml_tensor * memory_cross_k; + struct ggml_tensor * memory_cross_v; + + // + struct ggml_context * ctx; + std::map tensors; +}; + +struct whisper_context { + int64_t t_load_us = 0; + int64_t t_mel_us = 0; + int64_t t_sample_us = 0; + int64_t t_encode_us = 0; + int64_t t_decode_us = 0; + int64_t t_start_us = 0; + + std::vector buf_model; + std::vector buf_compute; + std::vector buf_compute_layer; + + whisper_model model; + whisper_vocab vocab; + + whisper_mel mel; + + std::vector probs; + std::vector logits; +}; + +// load the model from a ggml file +// +// file format: +// +// - hparams +// - pre-computed mel filters +// - vocab +// - weights +// +// see the convert-pt-to-ggml.py script for details +// +bool whisper_model_load(const std::string & fname, whisper_context & wctx) { + printf("%s: loading model from '%s'\n", __func__, fname.c_str()); + + auto & model = wctx.model; + auto & vocab = wctx.vocab; + + auto fin = std::ifstream(fname, std::ios::binary); + if (!fin) { + fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); + return false; + } + + // verify magic + { + uint32_t magic; + fin.read((char *) &magic, sizeof(magic)); + if (magic != 0x67676d6c) { + fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); + return false; + } + } + + //load hparams + { + auto & hparams = model.hparams; + + fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); + fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx)); + fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state)); + fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head)); + fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer)); + fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx)); + fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state)); + fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head)); + fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer)); + fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels)); + fin.read((char *) &hparams.f16, sizeof(hparams.f16)); + + assert(hparams.n_text_state == hparams.n_audio_state); + + if (hparams.n_audio_layer == 4) { + model.type = e_model::MODEL_TINY; + } + + if (hparams.n_audio_layer == 6) { + model.type = e_model::MODEL_BASE; + } + + if (hparams.n_audio_layer == 12) { + model.type = e_model::MODEL_SMALL; + } + + if (hparams.n_audio_layer == 24) { + model.type = e_model::MODEL_MEDIUM; + } + + if (hparams.n_audio_layer == 32) { + model.type = e_model::MODEL_LARGE; + } + + printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); + printf("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx); + printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state); + printf("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head); + printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer); + printf("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx); + printf("%s: n_text_state = %d\n", __func__, hparams.n_text_state); + printf("%s: n_text_head = %d\n", __func__, hparams.n_text_head); + printf("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer); + printf("%s: n_mels = %d\n", __func__, hparams.n_mels); + printf("%s: f16 = %d\n", __func__, hparams.f16); + printf("%s: type = %d\n", __func__, model.type); + + wctx.buf_model.resize(MEM_REQ_MODEL.at(model.type)); + wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type))); + wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type))); + + // this is the total memory required to run the inference + const size_t mem_required = + wctx.buf_model.size() + + wctx.buf_compute.size() + + wctx.buf_compute_layer.size(); + + printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); + } + + // load mel filters + { + auto & filters = wctx.model.filters; + + fin.read((char *) &filters.n_mel, sizeof(filters.n_mel)); + fin.read((char *) &filters.n_fft, sizeof(filters.n_fft)); + + filters.data.resize(filters.n_mel * filters.n_fft); + fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float)); + } + + // load vocab + { + int32_t n_vocab = 0; + fin.read((char *) &n_vocab, sizeof(n_vocab)); + + //if (n_vocab != model.hparams.n_vocab) { + // fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", + // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); + // return false; + //} + + std::string word; + for (int i = 0; i < n_vocab; i++) { + uint32_t len; + fin.read((char *) &len, sizeof(len)); + + word.resize(len); + fin.read((char *) word.data(), len); + + vocab.token_to_id[word] = i; + vocab.id_to_token[i] = word; + + //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); + } + + vocab.n_vocab = model.hparams.n_vocab; + if (vocab.is_multilingual()) { + vocab.token_eot++; + vocab.token_sot++; + vocab.token_prev++; + vocab.token_solm++; + vocab.token_not++; + vocab.token_beg++; + } + + if (n_vocab < model.hparams.n_vocab) { + printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab); + for (int i = n_vocab; i < model.hparams.n_vocab; i++) { + if (i > vocab.token_beg) { + word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]"; + } else if (i == vocab.token_eot) { + word = "[_EOT_]"; + } else if (i == vocab.token_sot) { + word = "[_SOT_]"; + } else if (i == vocab.token_prev) { + word = "[_PREV_]"; + } else if (i == vocab.token_not) { + word = "[_NOT_]"; + } else if (i == vocab.token_beg) { + word = "[_BEG_]"; + } else { + word = "[_extra_token_" + std::to_string(i) + "]"; + } + vocab.token_to_id[word] = i; + vocab.id_to_token[i] = word; + } + } + } + + // for the big tensors, we have the option to store the data in 16-bit floats + // in order to save memory and also to speed up the computation + const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32; + + + size_t ctx_size = 0; + + { + const auto & hparams = model.hparams; + + const int n_vocab = hparams.n_vocab; + + const int n_audio_ctx = hparams.n_audio_ctx; + const int n_audio_state = hparams.n_audio_state; + const int n_audio_layer = hparams.n_audio_layer; + + const int n_text_ctx = hparams.n_text_ctx; + const int n_text_state = hparams.n_text_state; + const int n_text_layer = hparams.n_text_layer; + + const int n_mels = hparams.n_mels; + + // encoder + { + // TODO: F16 .. maybe not? + ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe; + + ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w + ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b + + ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w + ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b + + ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w; + ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b; + } + + // decoder + { + // TODO: F16 .. maybe not? + ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe; + + ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te; + + ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w; + ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b; + } + + // encoder layers + { + ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w + ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b + + ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w + ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b + + ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w + ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b + + ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w + ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b + + ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w + ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b + + ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w + + ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w + ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b + + ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w + ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b + } + + // decoder layers + { + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b + + ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w + ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b + + ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b + + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b + // + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w + ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b + + ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w + ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b + } + + ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k + ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v + + ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k + ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v + + ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead + + printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); + } + + // create the ggml context + { + struct ggml_init_params params = { + .mem_size = wctx.buf_model.size(), + .mem_buffer = wctx.buf_model.data(), + }; + + model.ctx = ggml_init(params); + if (!model.ctx) { + fprintf(stderr, "%s: ggml_init() failed\n", __func__); + return false; + } + } + + // prepare memory for the weights + { + auto & ctx = model.ctx; + + const auto & hparams = model.hparams; + + const int n_vocab = hparams.n_vocab; + + const int n_audio_ctx = hparams.n_audio_ctx; + const int n_audio_state = hparams.n_audio_state; + const int n_audio_layer = hparams.n_audio_layer; + + const int n_text_ctx = hparams.n_text_ctx; + const int n_text_state = hparams.n_text_state; + const int n_text_layer = hparams.n_text_layer; + + const int n_mels = hparams.n_mels; + + model.layers_encoder.resize(n_audio_layer); + model.layers_decoder.resize(n_text_layer); + + // encoder + { + model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx); + + model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state); + model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); + + model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state); + model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); + + model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + // map by name + model.tensors["encoder.positional_embedding"] = model.e_pe; + + model.tensors["encoder.conv1.weight"] = model.e_conv_1_w; + model.tensors["encoder.conv1.bias"] = model.e_conv_1_b; + + model.tensors["encoder.conv2.weight"] = model.e_conv_2_w; + model.tensors["encoder.conv2.bias"] = model.e_conv_2_b; + + model.tensors["encoder.ln_post.weight"] = model.e_ln_w; + model.tensors["encoder.ln_post.bias"] = model.e_ln_b; + + for (int i = 0; i < n_audio_layer; ++i) { + auto & layer = model.layers_encoder[i]; + + layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state); + layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state); + + layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state); + layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); + layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); + + layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); + layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); + layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); + + // map by name + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; + + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; + model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; + } + } + + // decoder + { + model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx); + + model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab); + + model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + // map by name + model.tensors["decoder.positional_embedding"] = model.d_pe; + + model.tensors["decoder.token_embedding.weight"] = model.d_te; + + model.tensors["decoder.ln.weight"] = model.d_ln_w; + model.tensors["decoder.ln.bias"] = model.d_ln_b; + + for (int i = 0; i < n_text_layer; ++i) { + auto & layer = model.layers_decoder[i]; + + layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state); + layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state); + + layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state); + layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + + layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + + layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); + layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); + + // map by name + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b; + + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w; + model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b; + } + } + } + + // key + value memory + { + auto & ctx = model.ctx; + + const auto & hparams = model.hparams; + + const int n_text_state = hparams.n_text_state; + const int n_text_layer = hparams.n_text_layer; + const int n_text_ctx = hparams.n_text_ctx; + + // key/value memory for the self-attention layer + { + const int n_mem = n_text_layer*n_text_ctx; + const int n_elements = n_text_state*n_mem; + + model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); + model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); + } + + // key/value memory for the cross-attention layer + { + const int n_audio_ctx = hparams.n_audio_ctx; + + const int n_mem = n_text_layer*n_audio_ctx; + const int n_elements = n_text_state*n_mem; + + model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); + model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); + } + + const size_t memory_size = + ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + + ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); + + printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0); + } + + // load weights + { + size_t total_size = 0; + + while (true) { + int32_t n_dims; + int32_t length; + int32_t ftype; + + fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); + fin.read(reinterpret_cast(&length), sizeof(length)); + fin.read(reinterpret_cast(&ftype), sizeof(ftype)); + + if (fin.eof()) { + break; + } + + int32_t nelements = 1; + int32_t ne[3] = { 1, 1, 1 }; + for (int i = 0; i < n_dims; ++i) { + fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); + nelements *= ne[i]; + } + + std::string name(length, 0); + fin.read(&name[0], length); + + if (model.tensors.find(name.data()) == model.tensors.end()) { + fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); + return false; + } + + auto tensor = model.tensors[name.data()]; + if (ggml_nelements(tensor) != nelements) { + fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); + return false; + } + + if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) { + fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n", + __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]); + return false; + } + + const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t); + + if (nelements*bpe != ggml_nbytes(tensor)) { + fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", + __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); + return false; + } + + fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); + + //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); + total_size += ggml_nbytes(tensor); + } + + printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); + } + + fin.close(); + + return true; +} + +// evaluate the encoder +// +// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder +// part of the transformer model and returns the encoded features +// +// - model: the model +// - n_threads: number of threads to use +// - mel_offset: offset in the mel spectrogram (i.e. audio offset) +// - mel_inp: input mel spectrogram +// - features: output encoded features +// +bool whisper_encode( + whisper_context & wctx, + const int n_threads, + const int mel_offset) { + const auto & model = wctx.model; + const auto & mel_inp = wctx.mel; + const auto & hparams = model.hparams; + + const int n_vocab = hparams.n_vocab; + + const int n_ctx = hparams.n_audio_ctx; + const int n_state = hparams.n_audio_state; + const int n_head = hparams.n_audio_head; + const int n_layer = hparams.n_audio_layer; + + const int N = n_ctx; + + const int n_mels = hparams.n_mels; + assert(mel_inp.n_mel == n_mels); + + struct ggml_init_params params = { + .mem_size = wctx.buf_compute.size(), + .mem_buffer = wctx.buf_compute.data(), + }; + + struct ggml_context * ctx0 = ggml_init(params); + + struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels); + assert(mel->type == GGML_TYPE_F32); + { + float * dst = (float *) mel->data; + memset(dst, 0, ggml_nbytes(mel)); + + const int i0 = std::min(mel_offset, mel_inp.n_len); + const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len); + + for (int j = 0; j < mel_inp.n_mel; ++j) { + for (int i = i0; i < i1; ++i) { + dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i]; + } + } + } + + struct ggml_tensor * cur; + + // convolution + gelu + { + cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel); + cur = ggml_add(ctx0, + ggml_repeat(ctx0, + model.e_conv_1_b, + cur), + cur); + + cur = ggml_gelu(ctx0, cur); + + cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur); + cur = ggml_add(ctx0, + ggml_repeat(ctx0, + model.e_conv_2_b, + cur), + cur); + + cur = ggml_gelu(ctx0, cur); + } + + cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur)); + + struct ggml_tensor * inpL = cur; + + for (int il = 0; il < n_layer; ++il) { + const auto & layer = model.layers_encoder[il]; + + // create separate context for each layer to reduce memory usage + + struct ggml_init_params paramsL = { + .mem_size = wctx.buf_compute_layer.size(), + .mem_buffer = wctx.buf_compute_layer.data(), + }; + + struct ggml_context * ctxL = ggml_init(paramsL); + + // norm + { + cur = ggml_norm(ctxL, inpL); + + // cur = ln_0_w*cur + ln_0_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.attn_ln_0_w, cur), + cur), + ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); + } + + // self-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, + layer.attn_q_w, + cur); + + Qcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.attn_q_b, + Qcur), + Qcur); + + //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + // note: no bias for Key + struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, + layer.attn_k_w, + cur); + + //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, + layer.attn_v_w, + cur); + + Vcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.attn_v_b, + Vcur), + Vcur); + + // ------ + +#ifdef USE_FLASH_ATTN + struct ggml_tensor * Q = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Qcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * K = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Kcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * V = + ggml_cpy(ctxL, + ggml_permute(ctxL, + ggml_reshape_3d(ctxL, + Vcur, + n_state/n_head, n_head, N), + 1, 2, 0, 3), + ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head) + ); + + struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false); +#else + struct ggml_tensor * Q = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Qcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * K = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Kcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); + + struct ggml_tensor * KQ_scaled = + ggml_scale(ctxL, + KQ, + ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) + ); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled); + + //struct ggml_tensor * V_trans = + // ggml_permute(ctxL, + // ggml_cpy(ctxL, + // Vcur, + // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), + // 1, 2, 0, 3); + + //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); + + struct ggml_tensor * V = + ggml_cpy(ctxL, + ggml_permute(ctxL, + ggml_reshape_3d(ctxL, + Vcur, + n_state/n_head, n_head, N), + 0, 2, 1, 3), + ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head) + ); + + struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max); +#endif + + struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); + + cur = ggml_cpy(ctxL, + KQV_merged, + ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); + } + + // projection + { + cur = ggml_mul_mat(ctxL, + layer.attn_ln_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.attn_ln_1_b, cur), + cur); + } + + // add the input + cur = ggml_add(ctxL, cur, inpL); + + struct ggml_tensor * inpFF = cur; + + // feed-forward network + { + // norm + { + cur = ggml_norm(ctxL, inpFF); + + // cur = mlp_ln_w*cur + mlp_ln_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.mlp_ln_w, cur), + cur), + ggml_repeat(ctxL, layer.mlp_ln_b, cur)); + } + +#ifdef USE_FLASH_FF + cur = ggml_flash_ff(ctxL, + ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)), + layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b); +#else + // fully connected + cur = ggml_mul_mat(ctxL, + layer.mlp_0_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.mlp_0_b, cur), + cur); + + // GELU activation + cur = ggml_gelu(ctxL, cur); + + // projection + cur = ggml_mul_mat(ctxL, + layer.mlp_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.mlp_1_b, cur), + cur); +#endif + } + + // output from this layer + struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); + + { + struct ggml_cgraph gf = { .n_threads = n_threads }; + + ggml_build_forward_expand(&gf, inpO); + ggml_graph_compute (ctxL, &gf); + + //ggml_graph_print(&gf); + } + + // TODO: this is a hack to have per-layer computation graphs - need to come up with something better + // input for next layer (inpO -> inpL) + memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); + inpL->op = GGML_OP_NONE; + inpL->src0 = NULL; + inpL->src1 = NULL; + + //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); + + ggml_free(ctxL); + } + + cur = inpL; + + // norm + { + cur = ggml_norm(ctx0, cur); + + // cur = ln_f_g*cur + ln_f_b + cur = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.e_ln_w, cur), + cur), + ggml_repeat(ctx0, model.e_ln_b, cur)); + } + + // run the computation + { + struct ggml_cgraph gf = { .n_threads = n_threads }; + + ggml_build_forward_expand(&gf, cur); + ggml_graph_compute (ctx0, &gf); + + //ggml_graph_print(&gf); + } + + // cur + //{ + // printf("ne0 = %d\n", cur->ne[0]); + // printf("ne1 = %d\n", cur->ne[1]); + // for (int i = 0; i < 10; ++i) { + // printf("%8.4f ", ((float *)(cur->data))[i]); + // } + // printf("... "); + // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) { + // printf("%8.4f ", ((float *)(cur->data))[i]); + // } + // printf("\n"); + //} + + // pre-compute cross-attention memory + { + struct ggml_cgraph gf = { .n_threads = n_threads }; + + // TODO: hack to disconnect the encoded features from the previous graph + cur->op = GGML_OP_NONE; + cur->src0 = NULL; + cur->src1 = NULL; + + for (int il = 0; il < model.hparams.n_text_layer; ++il) { + auto & layer = model.layers_decoder[il]; + + struct ggml_tensor * Kcross = ggml_mul_mat(ctx0, + layer.cross_attn_k_w, + cur); + + Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); + + struct ggml_tensor * Vcross = ggml_mul_mat(ctx0, + layer.cross_attn_v_w, + cur); + + Vcross = ggml_add(ctx0, + ggml_repeat(ctx0, + layer.cross_attn_v_b, + Vcross), + Vcross); + + struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx)); + struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx)); + + ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); + ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); + } + + ggml_graph_compute(ctx0, &gf); + } + + //////////////////////////////////////////////////////////////////////////// + + //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0); + + ggml_free(ctx0); + + return true; +} + +// evaluate the decoder +// +// given text prompt + audio features -> predicts the probabilities for the next token +// +// - model: the model +// - n_threads: number of threads to use +// - n_past: prompt length +// - prompt: text prompt +// - logits_out: output logits +// - probs_out: output probabilities +// +bool whisper_decode( + whisper_context & wctx, + const int n_threads, + const whisper_token * tokens, + const int n_tokens, + const int n_past) { + const auto & model = wctx.model; + const auto & hparams = model.hparams; + + auto & logits_out = wctx.logits; + auto & probs_out = wctx.probs; + + const int n_vocab = hparams.n_vocab; + + const int n_ctx = hparams.n_text_ctx; + const int n_state = hparams.n_text_state; + const int n_head = hparams.n_text_head; + const int n_layer = hparams.n_text_layer; + + const int N = n_tokens; + const int M = hparams.n_audio_ctx; + + struct ggml_init_params params = { + .mem_size = wctx.buf_compute.size(), + .mem_buffer = wctx.buf_compute.data(), + }; + + struct ggml_context * ctx0 = ggml_init(params); + + struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + memcpy(embd->data, tokens, N*ggml_element_size(embd)); + + struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + for (int i = 0; i < N; ++i) { + ((int32_t *) position->data)[i] = n_past + i; + } + + // token encoding + position encoding + struct ggml_tensor * cur = + ggml_add(ctx0, + ggml_get_rows(ctx0, model.d_te, embd), + ggml_get_rows(ctx0, model.d_pe, position)); + + struct ggml_tensor * inpL = cur; + + for (int il = 0; il < n_layer; ++il) { + const auto & layer = model.layers_decoder[il]; + + struct ggml_init_params paramsL = { + .mem_size = wctx.buf_compute_layer.size(), + .mem_buffer = wctx.buf_compute_layer.data(), + }; + + struct ggml_context * ctxL = ggml_init(paramsL); + struct ggml_cgraph gf = { .n_threads = n_threads }; + + // norm + { + cur = ggml_norm(ctxL, inpL); + + // cur = ln_0_w*cur + ln_0_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.attn_ln_0_w, cur), + cur), + ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); + } + + // self-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, + layer.attn_q_w, + cur); + + Qcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.attn_q_b, + Qcur), + Qcur); + + Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + // note: no bias for Key + struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, + layer.attn_k_w, + cur); + + Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, + layer.attn_v_w, + cur); + + Vcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.attn_v_b, + Vcur), + Vcur); + + // store key and value to memory + { + struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past)); + struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past)); + + ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k)); + ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v)); + } + + // ------ + + struct ggml_tensor * Q = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Qcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * K = + ggml_permute(ctxL, + ggml_reshape_3d(ctxL, + ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state), + n_state/n_head, n_head, n_past + N), + 0, 2, 1, 3); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); + + //struct ggml_tensor * KQ_scaled = + // ggml_scale(ctxL, + // KQ, + // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) + // ); + + struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked); + + struct ggml_tensor * V_trans = + ggml_permute(ctxL, + ggml_reshape_3d(ctxL, + ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state), + n_state/n_head, n_head, n_past + N), + 1, 2, 0, 3); + + struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); + + struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); + + cur = ggml_cpy(ctxL, + KQV_merged, + ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); + } + + { + cur = ggml_mul_mat(ctxL, + layer.attn_ln_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.attn_ln_1_b, cur), + cur); + } + + // add the input + struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL); + + // norm + { + cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here + + // cur = ln_0_w*cur + ln_0_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur), + cur), + ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur)); + } + + // cross-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, + layer.cross_attn_q_w, + cur); + + Qcur = ggml_add(ctxL, + ggml_repeat(ctxL, + layer.cross_attn_q_b, + Qcur), + Qcur); + + Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); + + // Kcross is already scaled + struct ggml_tensor * Kcross = + ggml_reshape_3d(ctxL, + ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state), + n_state/n_head, n_head, M); + + struct ggml_tensor * Vcross = + ggml_reshape_3d(ctxL, + ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state), + n_state/n_head, n_head, M); + + // ------ + + struct ggml_tensor * Q = + ggml_permute(ctxL, + ggml_cpy(ctxL, + Qcur, + ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), + 0, 2, 1, 3); + + struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); + + //struct ggml_tensor * KQ_scaled = + // ggml_scale(ctxL, + // KQ, + // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) + // ); + + // no masking for cross-attention + //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ); + + struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3); + + struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); + + struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); + + // cur = KQV_merged.contiguous().view(n_state, N) + cur = ggml_cpy(ctxL, + KQV_merged, + ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); + } + + // projection + { + cur = ggml_mul_mat(ctxL, + layer.cross_attn_ln_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur), + cur); + } + + // add the input + cur = ggml_add(ctxL, cur, inpCA); + + struct ggml_tensor * inpFF = cur; + + // feed-forward network + { + // norm + { + cur = ggml_norm(ctxL, inpFF); + + // cur = mlp_ln_w*cur + mlp_ln_b + cur = ggml_add(ctxL, + ggml_mul(ctxL, + ggml_repeat(ctxL, layer.mlp_ln_w, cur), + cur), + ggml_repeat(ctxL, layer.mlp_ln_b, cur)); + } + + // fully connected + cur = ggml_mul_mat(ctxL, + layer.mlp_0_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.mlp_0_b, cur), + cur); + + // GELU activation + cur = ggml_gelu(ctxL, cur); + + // projection + cur = ggml_mul_mat(ctxL, + layer.mlp_1_w, + cur); + + cur = ggml_add(ctxL, + ggml_repeat(ctxL, layer.mlp_1_b, cur), + cur); + } + + // output from this layer + struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); + + { + ggml_build_forward_expand(&gf, inpO); + ggml_graph_compute (ctxL, &gf); + + //ggml_graph_print(&gf); + } + + // TODO: this is a hack to have per-layer computation graphs - need to come up with something better + // input for next layer (inpO -> inpL) + memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); + inpL->op = GGML_OP_NONE; + inpL->src0 = NULL; + inpL->src1 = NULL; + + if (N > 1) { + //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); + } + + ggml_free(ctxL); + } + + cur = inpL; + + // norm + { + cur = ggml_norm(ctx0, cur); + + cur = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.d_ln_w, cur), + cur), + ggml_repeat(ctx0, model.d_ln_b, cur)); + } + + struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur); + + // logits -> probs + cur = ggml_dup(ctx0, logits); + cur = ggml_soft_max(ctx0, cur); // in-place + + // run the computation + { + struct ggml_cgraph gf = { .n_threads = n_threads }; + + ggml_build_forward_expand(&gf, cur); + ggml_graph_compute (ctx0, &gf); + } + + logits_out.resize(N*n_vocab); + memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab); + + probs_out.resize(N*n_vocab); + memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab); + + if (N > 1) { + //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N; + //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token); + //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx); + } + + ggml_free(ctx0); + + return true; +} + +// the most basic sampling scheme - select the top token +// TODO: beam search +// TODO: temperature +whisper_vocab::id whisper_sample_best( + const whisper_vocab & vocab, + const float * probs, bool need_timestamp) { + int n_logits = vocab.id_to_token.size(); + + std::vector> probs_id; + probs_id.reserve(n_logits); + + for (int i = 0; i < n_logits; i++) { + probs_id.push_back(std::make_pair(probs[i], i)); + } + + const int top_k = 4; + + // find the top K tokens + std::partial_sort( + probs_id.begin(), + probs_id.begin() + top_k, probs_id.end(), + [](const std::pair & a, const std::pair & b) { + return a.first > b.first; + }); + + probs_id.resize(top_k); + + //printf("\n"); + //for (int i = 0; i < (int) probs_id.size(); i++) { + // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); + //} + + if (need_timestamp) { + // at the end of the 30-second audio segment, we start giving preference to time tokens + for (int i = 0; i < top_k; i++) { + if (probs_id[i].second > vocab.token_beg + 1300 && probs_id[i].first > 0.01*probs_id[0].first) { + return probs_id[i].second; + } + } + } + + int res = 0; + while ((probs_id[res].second == vocab.token_sot || + probs_id[res].second == vocab.token_solm || + probs_id[res].second == vocab.token_not) && + res < (int) probs_id.size() - 1) { + res++; + } + + return probs_id[res].second; +} + +// samples only from the timestamps tokens +whisper_vocab::id whisper_sample_timestamp( + const whisper_vocab & vocab, + const float * probs) { + int n_logits = vocab.id_to_token.size(); + + std::vector> probs_id; + probs_id.reserve(n_logits); + + for (int i = vocab.token_beg + 1; i < n_logits; i++) { + probs_id.push_back(std::make_pair(probs[i], i)); + } + + const int top_k = 10; + + // find the top K tokens + std::partial_sort( + probs_id.begin(), + probs_id.begin() + top_k, probs_id.end(), + [](const std::pair & a, const std::pair & b) { + return a.first > b.first; + }); + + probs_id.resize(top_k); + + //printf("\n"); + //for (int i = 0; i < (int) probs_id.size(); i++) { + // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); + //} + + return probs_id[0].second; +} + +// naive Discrete Fourier Transform +// input is real-valued +// output is complex-valued +void dft(const std::vector & in, std::vector & out) { + int N = in.size(); + + out.resize(N*2); + + for (int k = 0; k < N; k++) { + float re = 0; + float im = 0; + + for (int n = 0; n < N; n++) { + float angle = 2*M_PI*k*n/N; + re += in[n]*cos(angle); + im -= in[n]*sin(angle); + } + + out[k*2 + 0] = re; + out[k*2 + 1] = im; + } +} + +// Cooley-Tukey FFT +// poor man's implementation - use something better +// input is real-valued +// output is complex-valued +void fft(const std::vector & in, std::vector & out) { + out.resize(in.size()*2); + + int N = in.size(); + + if (N == 1) { + out[0] = in[0]; + out[1] = 0; + return; + } + + if (N%2 == 1) { + dft(in, out); + return; + } + + std::vector even; + std::vector odd; + + for (int i = 0; i < N; i++) { + if (i % 2 == 0) { + even.push_back(in[i]); + } else { + odd.push_back(in[i]); + } + } + + std::vector even_fft; + std::vector odd_fft; + + fft(even, even_fft); + fft(odd, odd_fft); + + for (int k = 0; k < N/2; k++) { + float theta = 2*M_PI*k/N; + + float re = cos(theta); + float im = -sin(theta); + + float re_odd = odd_fft[2*k + 0]; + float im_odd = odd_fft[2*k + 1]; + + out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd; + out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd; + + out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd; + out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd; + } +} + +// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124 +bool log_mel_spectrogram( + const float * samples, + const int n_samples, + const int sample_rate, + const int fft_size, + const int fft_step, + const int n_mel, + const int n_threads, + const whisper_filters & filters, + whisper_mel & mel) { + + // Hanning window + std::vector hann; + hann.resize(fft_size); + for (int i = 0; i < fft_size; i++) { + hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size))); + } + + mel.n_mel = n_mel; + mel.n_len = (n_samples)/fft_step; + mel.data.resize(mel.n_mel*mel.n_len); + + const int n_fft = 1 + fft_size/2; + + printf("%s: n_samples = %d, n_len = %d\n", __func__, n_samples, mel.n_len); + printf("%s: recording length: %f s\n", __func__, (float) n_samples/sample_rate); + + std::vector workers(n_threads); + for (int iw = 0; iw < n_threads; ++iw) { + workers[iw] = std::thread([&](int ith) { + std::vector fft_in; + fft_in.resize(fft_size); + for (int i = 0; i < fft_size; i++) { + fft_in[i] = 0.0; + } + + std::vector fft_out; + fft_out.resize(2*fft_size); + + for (int i = ith; i < mel.n_len; i += n_threads) { + const int offset = i*fft_step; + + // apply Hanning window + for (int j = 0; j < fft_size; j++) { + if (offset + j < n_samples) { + fft_in[j] = hann[j]*samples[offset + j]; + } else { + fft_in[j] = 0.0; + } + } + + // FFT -> mag^2 + fft(fft_in, fft_out); + + for (int j = 0; j < fft_size; j++) { + fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]); + } + for (int j = 1; j < fft_size/2; j++) { + //if (i == 0) { + // printf("%d: %f %f\n", j, fft_out[j], fft_out[fft_size - j]); + //} + fft_out[j] += fft_out[fft_size - j]; + } + if (i == 0) { + //for (int j = 0; j < fft_size; j++) { + // printf("%d: %e\n", j, fft_out[j]); + //} + } + + // mel spectrogram + for (int j = 0; j < mel.n_mel; j++) { + double sum = 0.0; + + for (int k = 0; k < n_fft; k++) { + sum += fft_out[k]*filters.data[j*n_fft + k]; + } + if (sum < 1e-10) { + sum = 1e-10; + } + + sum = log10(sum); + + mel.data[j*mel.n_len + i] = sum; + } + } + }, iw); + } + + for (int iw = 0; iw < n_threads; ++iw) { + workers[iw].join(); + } + + // clamping and normalization + double mmax = -1e20; + for (int i = 0; i < mel.n_mel*mel.n_len; i++) { + if (mel.data[i] > mmax) { + mmax = mel.data[i]; + } + } + //printf("%s: max = %f\n", __func__, mmax); + + mmax -= 8.0; + + for (int i = 0; i < mel.n_mel*mel.n_len; i++) { + if (mel.data[i] < mmax) { + mel.data[i] = mmax; + } + + mel.data[i] = (mel.data[i] + 4.0)/4.0; + } + + return true; +} + +// +// interface implementation +// + +struct whisper_context * whisper_init(const char * path_model) { + whisper_context * ctx = new whisper_context; + + const int64_t t_start_us = ggml_time_us(); + + ctx->t_start_us = t_start_us; + + if (!whisper_model_load(path_model, *ctx)) { + fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model); + return NULL; + } + + ctx->t_load_us = ggml_time_us() - t_start_us; + + return ctx; +} + +void whisper_free(struct whisper_context * ctx) { + if (ctx) { + delete ctx; + } +} + +int whisper_pcm_to_mel(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) { + const int64_t t_start_us = ggml_time_us(); + + if (!log_mel_spectrogram(samples, n_samples, SAMPLE_RATE, N_FFT, HOP_LENGTH, N_MEL, n_threads, ctx->model.filters, ctx->mel)) { + fprintf(stderr, "%s: failed to compute mel spectrogram\n", __func__); + return -1; + } + + ctx->t_mel_us = ggml_time_us() - t_start_us; + + return 0; +} + +int whisper_set_mel( + struct whisper_context * ctx, + const float * data, + int n_len, + int n_mel) { + if (n_mel != N_MEL) { + fprintf(stderr, "%s: invalid number of mel bands: %d (expected %d)\n", __func__, n_mel, N_MEL); + return -1; + } + + ctx->mel.n_len = n_len; + ctx->mel.n_mel = n_mel; + + ctx->mel.data.resize(n_len*n_mel); + memcpy(ctx->mel.data.data(), data, n_len*n_mel*sizeof(float)); + + return 0; +} + +int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) { + const int64_t t_start_us = ggml_time_us(); + + if (!whisper_encode(*ctx, n_threads, offset)) { + fprintf(stderr, "%s: failed to eval\n", __func__); + return -1; + } + + ctx->t_encode_us += ggml_time_us() - t_start_us; + + return 0; +} + +int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) { + const int64_t t_start_us = ggml_time_us(); + + if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past)) { + fprintf(stderr, "%s: failed to eval\n", __func__); + return 1; + } + + ctx->t_decode_us += ggml_time_us() - t_start_us; + + return 0; +} + +whisper_token whisper_sample_best(struct whisper_context * ctx, bool need_timestamp) { + const int64_t t_start_sample_us = ggml_time_us(); + + // TODO: simplify + auto res = whisper_sample_best(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab), need_timestamp); + + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + + return res; +} + +whisper_token whisper_sample_timestamp(struct whisper_context * ctx) { + const int64_t t_start_sample_us = ggml_time_us(); + + // TODO: simplify + auto res = whisper_sample_timestamp(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab)); + + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + + return res; +} + +int whisper_lang_id(const char * lang) { + if (!g_lang.count(lang)) { + fprintf(stderr, "%s: unknown language '%s'\n", __func__, lang); + return -1; + } + + return g_lang.at(lang).first; +} + +int whisper_n_len(struct whisper_context * ctx) { + return ctx->mel.n_len; +} + +int whisper_n_vocab(struct whisper_context * ctx) { + return ctx->vocab.n_vocab; +} + +int whisper_n_text_ctx(struct whisper_context * ctx) { + return ctx->model.hparams.n_text_ctx; +} + +int whisper_is_multilingual(struct whisper_context * ctx) { + return ctx->vocab.is_multilingual() ? 1 : 0; +} + +float * whisper_get_probs(struct whisper_context * ctx) { + return ctx->probs.data(); +} + +const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token) { + return ctx->vocab.id_to_token.at(token).c_str(); +} + +whisper_token whisper_token_eot(struct whisper_context * ctx) { + return ctx->vocab.token_eot; +} + +whisper_token whisper_token_sot(struct whisper_context * ctx) { + return ctx->vocab.token_sot; +} + +whisper_token whisper_token_prev(struct whisper_context * ctx) { + return ctx->vocab.token_prev; +} + +whisper_token whisper_token_solm(struct whisper_context * ctx) { + return ctx->vocab.token_solm; +} + +whisper_token whisper_token_not(struct whisper_context * ctx) { + return ctx->vocab.token_not; +} + +whisper_token whisper_token_beg(struct whisper_context * ctx) { + return ctx->vocab.token_beg; +} + +whisper_token whisper_token_translate() { + return whisper_vocab::token_translate; +} + +whisper_token whisper_token_transcribe() { + return whisper_vocab::token_transcribe; +} + +void whisper_print_timings(struct whisper_context * ctx) { + const int64_t t_end_us = ggml_time_us(); + + printf("\n\n"); + printf("%s: load time = %8.2f ms\n", __func__, ctx->t_load_us/1000.0f); + printf("%s: mel time = %8.2f ms\n", __func__, ctx->t_mel_us/1000.0f); + printf("%s: sample time = %8.2f ms\n", __func__, ctx->t_sample_us/1000.0f); + printf("%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_encode_us/1000.0f, ctx->t_encode_us/1000.0f/ctx->model.hparams.n_audio_layer); + printf("%s: decode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_decode_us/1000.0f, ctx->t_decode_us/1000.0f/ctx->model.hparams.n_text_layer); + printf("%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f); +} diff --git a/whisper.h b/whisper.h new file mode 100644 index 0000000..c282aa2 --- /dev/null +++ b/whisper.h @@ -0,0 +1,133 @@ +#ifndef WHISPER_H +#define WHISPER_H + +#ifdef WHISPER_SHARED +# ifdef _WIN32 +# ifdef WHISPER_BUILD +# define WHISPER_API __declspec(dllexport) +# else +# define WHISPER_API __declspec(dllimport) +# endif +# else +# define WHISPER_API __attribute__ ((visibility ("default"))) +# endif +#else +# define WHISPER_API +#endif + +#ifdef __cplusplus +extern "C" { +#endif + + // + // C interface + // + +#define SAMPLE_RATE 16000 +#define N_FFT 400 +#define N_MEL 80 +#define HOP_LENGTH 160 +#define CHUNK_SIZE 30 + + // TODO: documentation will come soon + + struct whisper_context; + + typedef int whisper_token; + + WHISPER_API struct whisper_context * whisper_init(const char * path_model); + WHISPER_API void whisper_free(struct whisper_context * ctx); + + WHISPER_API int whisper_pcm_to_mel( + struct whisper_context * ctx, + const float * samples, + int n_samples, + int n_threads); + + // n_mel must be 80 + WHISPER_API int whisper_set_mel( + struct whisper_context * ctx, + const float * data, + int n_len, + int n_mel); + + WHISPER_API int whisper_encode( + struct whisper_context * ctx, + int offset, + int n_threads); + + WHISPER_API int whisper_decode( + struct whisper_context * ctx, + const whisper_token * tokens, + int n_tokens, + int n_past, + int n_threads); + + WHISPER_API whisper_token whisper_sample_best(struct whisper_context * ctx, bool need_timestamp); + WHISPER_API whisper_token whisper_sample_timestamp(struct whisper_context * ctx); + + // return the id of the specified language, returns -1 if not found + WHISPER_API int whisper_lang_id(const char * lang); + + WHISPER_API int whisper_n_len (struct whisper_context * ctx); // mel length + WHISPER_API int whisper_n_vocab (struct whisper_context * ctx); + WHISPER_API int whisper_n_text_ctx (struct whisper_context * ctx); + WHISPER_API int whisper_is_multilingual(struct whisper_context * ctx); + WHISPER_API float * whisper_get_probs (struct whisper_context * ctx); + + WHISPER_API const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token); + + WHISPER_API whisper_token whisper_token_eot (struct whisper_context * ctx); + WHISPER_API whisper_token whisper_token_sot (struct whisper_context * ctx); + WHISPER_API whisper_token whisper_token_prev(struct whisper_context * ctx); + WHISPER_API whisper_token whisper_token_solm(struct whisper_context * ctx); + WHISPER_API whisper_token whisper_token_not (struct whisper_context * ctx); + WHISPER_API whisper_token whisper_token_beg (struct whisper_context * ctx); + + WHISPER_API whisper_token whisper_token_translate (); + WHISPER_API whisper_token whisper_token_transcribe(); + + WHISPER_API void whisper_print_timings(struct whisper_context * ctx); + + //////////////////////////////////////////////////////////////////////////// + + enum whisper_decode_strategy { + WHISPER_DECODE_GREEDY, + WHISPER_DECODE_BEAM_SEARCH, + }; + + struct whisper_full_params { + enum whisper_decode_strategy strategy; + + int n_threads; + + bool transcribe; + + const char * language; + + union { + struct { + int n_past; + } greedy; + + struct { + int n_past; + int beam_width; + int n_best; + } beam_search; + }; + }; + + // full whisper run - encode + decode + // TODO: implement + WHISPER_API int whisper_full( + struct whisper_context * ctx, + struct whisper_full_params * params, + const float * samples, + int n_samples); + +#ifdef __cplusplus +} +#endif + +#endif