diff --git a/whisper.cpp b/whisper.cpp index d19ff42..dd9597d 100644 --- a/whisper.cpp +++ b/whisper.cpp @@ -1034,8 +1034,8 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) { { auto hparams = model.hparams; - hparams.n_audio_state /= 2; - hparams.n_text_state /= 2; + //hparams.n_audio_state /= 2; + //hparams.n_text_state /= 2; fout.write(reinterpret_cast(&hparams.n_vocab), sizeof(hparams.n_vocab)); fout.write(reinterpret_cast(&hparams.n_audio_ctx), sizeof(hparams.n_audio_ctx)); @@ -1087,151 +1087,225 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) { fout.write(reinterpret_cast(const_cast(&ftype)), sizeof(ftype)); printf("name = %42s, n_dims = %d, ne0 = %d, ne1 = %d, ne2 = %d, ftype = %d\n", name.data(), n_dims, tensor->ne[0], tensor->ne[1], tensor->ne[2], ftype); - for (int i = 0; i < n_dims; ++i) { - const int32_t ne = (tensor->ne[i]%model.hparams.n_audio_state == 0) ? tensor->ne[i]/2 : tensor->ne[i]; - fout.write(reinterpret_cast(const_cast(&ne)), sizeof(ne)); - } - - fout.write(reinterpret_cast(const_cast(name.data())), length); - - if (tensor->type == GGML_TYPE_F16) { - if (name == "decoder.token_embedding.weight") { - const int ne0 = tensor->ne[0]; - const int ne1 = tensor->ne[1]; - - std::vector tmp((ne0/2)*ne1); - const ggml_fp16_t * src = (const ggml_fp16_t *) tensor->data; - for (int i1 = 0; i1 < ne1; ++i1) { - for (int i0 = 0; i0 < ne0/2; ++i0) { - const float v00 = ggml_fp16_to_fp32(src[i0*2+0 + i1*ne0]); - const float v01 = ggml_fp16_to_fp32(src[i0*2+1 + i1*ne0]); - - tmp[i1*ne0/2 + i0] = ggml_fp32_to_fp16(0.5f*(v00 + v01)); - } + //for (int i = 0; i < n_dims; ++i) { + // const int32_t ne = (tensor->ne[i]%model.hparams.n_audio_state == 0) ? tensor->ne[i]/2 : tensor->ne[i]; + // fout.write(reinterpret_cast(const_cast(&ne)), sizeof(ne)); + //} + + //if (tensor->type == GGML_TYPE_F16) { + // if (name == "decoder.token_embedding.weight") { + // const int ne0 = tensor->ne[0]; + // const int ne1 = tensor->ne[1]; + + // std::vector tmp((ne0/2)*ne1); + + // const ggml_fp16_t * src = (const ggml_fp16_t *) tensor->data; + // for (int i1 = 0; i1 < ne1; ++i1) { + // for (int i0 = 0; i0 < ne0/2; ++i0) { + // const float v00 = ggml_fp16_to_fp32(src[i0*2+0 + i1*ne0]); + // const float v01 = ggml_fp16_to_fp32(src[i0*2+1 + i1*ne0]); + + // tmp[i1*ne0/2 + i0] = ggml_fp32_to_fp16(0.5f*(v00 + v01)); + // } + // } + + // fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(ggml_fp16_t)); + // } else if (tensor->n_dims == 2) { + // const int ne0 = tensor->ne[0]; + // const int ne1 = tensor->ne[1]; + + // std::vector tmp((ne0/2)*(ne1/2)); + + // const ggml_fp16_t * src = (const ggml_fp16_t *) tensor->data; + // for (int i1 = 0; i1 < ne1/2; ++i1) { + // for (int i0 = 0; i0 < ne0/2; ++i0) { + // const float v00 = ggml_fp16_to_fp32(src[2*i0 + 2*i1*ne0]); + // const float v01 = ggml_fp16_to_fp32(src[2*i0 + 1 + 2*i1*ne0]); + // const float v10 = ggml_fp16_to_fp32(src[2*i0 + (2*i1+1)*ne0]); + // const float v11 = ggml_fp16_to_fp32(src[2*i0 + 1 + (2*i1+1)*ne0]); + + // tmp[i1*(ne0/2) + i0] = ggml_fp32_to_fp16(0.25*(v00 + v01 + v10 + v11)); + // } + // } + + // fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(ggml_fp16_t)); + // } else if (tensor->n_dims == 3) { + // const int ne0 = tensor->ne[0]; + // const int ne1 = tensor->ne[1]; + // const int ne2 = tensor->ne[2]; + + // if (ne1 == 80) { + // std::vector tmp(ne0*ne1*(ne2/2)); + + // const ggml_fp16_t * src = (const ggml_fp16_t *) tensor->data; + // for (int i2 = 0; i2 < ne2/2; ++i2) { + // for (int i1 = 0; i1 < ne1; ++i1) { + // for (int i0 = 0; i0 < ne0; ++i0) { + // const float v0 = ggml_fp16_to_fp32(src[i0 + i1*ne0 + 2*i2*ne0*ne1]); + // const float v1 = ggml_fp16_to_fp32(src[i0 + i1*ne0 + (2*i2+1)*ne0*ne1]); + + // tmp[i0 + i1*ne0 + i2*ne0*ne1] = ggml_fp32_to_fp16(0.5*(v0 + v1)); + // } + // } + // } + + // fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(ggml_fp16_t)); + // } else { + // std::vector tmp(ne0*(ne1/2)*(ne2/2)); + + // const ggml_fp16_t * src = (const ggml_fp16_t *) tensor->data; + // for (int i2 = 0; i2 < ne2/2; ++i2) { + // for (int i1 = 0; i1 < ne1/2; ++i1) { + // for (int i0 = 0; i0 < ne0; ++i0) { + // const float v00 = ggml_fp16_to_fp32(src[i0 + 2*i1*ne0 + 2*i2*ne0*ne1]); + // const float v01 = ggml_fp16_to_fp32(src[i0 + (2*i1+1)*ne0 + 2*i2*ne0*ne1]); + // const float v10 = ggml_fp16_to_fp32(src[i0 + 2*i1*ne0 + (2*i2+1)*ne0*ne1]); + // const float v11 = ggml_fp16_to_fp32(src[i0 + (2*i1+1)*ne0 + (2*i2+1)*ne0*ne1]); + + // tmp[i0 + i1*ne0 + i2*ne0*(ne1/2)] = ggml_fp32_to_fp16(0.25*(v00 + v01 + v10 + v11)); + // } + // } + // } + + // fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(ggml_fp16_t)); + // } + // } else { + // assert(false); + // } + //} else { + // if (tensor->n_dims == 1) { + // const int ne0 = tensor->ne[0]; + + // std::vector tmp(ne0/2); + + // const float * src = (const float *) tensor->data; + // for (int i0 = 0; i0 < ne0/2; ++i0) { + // tmp[i0] = 0.5*(src[2*i0] + src[2*i0+1]); + // } + + // fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(float)); + // } else if (tensor->n_dims == 2) { + // const int ne0 = tensor->ne[0]; + // const int ne1 = tensor->ne[1]; + + // if (name == "encoder.positional_embedding" || name == "decoder.positional_embedding") { + // std::vector tmp((ne0/2)*ne1); + + // const float * src = (const float *) tensor->data; + // for (int i1 = 0; i1 < ne1; ++i1) { + // for (int i0 = 0; i0 < ne0/2; ++i0) { + // tmp[i0 + i1*(ne0/2)] = 0.5*(src[2*i0 + i1*ne0] + src[2*i0 + 1 + i1*ne0]); + // } + // } + + // fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(float)); + // } else if (name == "encoder.conv1.bias" || name == "encoder.conv2.bias") { + // std::vector tmp(ne0*(ne1/2)); + + // const float * src = (const float *) tensor->data; + // for (int i1 = 0; i1 < ne1/2; ++i1) { + // for (int i0 = 0; i0 < ne0; ++i0) { + // tmp[i0 + i1*ne0] = 0.5*(src[i0 + 2*i1*ne0] + src[i0 + (2*i1+1)*ne0]); + // } + // } + + // fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(float)); + // } else { + // std::vector tmp((ne0/2)*(ne1/2)); + + // const float * src = (const float *) tensor->data; + // for (int i1 = 0; i1 < ne1/2; ++i1) { + // for (int i0 = 0; i0 < ne0/2; ++i0) { + // const float v00 = src[2*i0 + 2*i1*ne0]; + // const float v01 = src[2*i0 + 1 + 2*i1*ne0]; + // const float v10 = src[2*i0 + (2*i1+1)*ne0]; + // const float v11 = src[2*i0 + 1 + (2*i1+1)*ne0]; + + // tmp[i1*(ne0/2) + i0] = 0.25*(v00 + v01 + v10 + v11); + // } + // } + + // fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(float)); + // } + // } else { + // assert(false); + // } + //} + + // if name ends with ".mlp.0.weight" + if (name.substr(name.size() - 13) == ".mlp.0.weight") { + const int32_t ne0 = tensor->ne[0]; + const int32_t ne1 = tensor->ne[1]/2; + + fout.write(reinterpret_cast(&ne0), sizeof(int32_t)); + fout.write(reinterpret_cast(&ne1), sizeof(int32_t)); + fout.write(reinterpret_cast(const_cast(name.data())), length); + + printf("name = %s, ne0 = %d, ne1 = %d\n", name.c_str(), ne0, ne1); + + std::vector tmp(ne0*ne1); + + const ggml_fp16_t * src = (const ggml_fp16_t *) tensor->data; + for (int i1 = 0; i1 < ne1; ++i1) { + for (int i0 = 0; i0 < ne0; ++i0) { + const float v00 = ggml_fp16_to_fp32(src[i0 + 2*i1*ne0]); + const float v01 = ggml_fp16_to_fp32(src[i0 + (2*i1+1)*ne0]); + + tmp[i0 + i1*ne0] = ggml_fp32_to_fp16(0.5*(v00 + v01)); } + } - fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(ggml_fp16_t)); - } else if (tensor->n_dims == 2) { - const int ne0 = tensor->ne[0]; - const int ne1 = tensor->ne[1]; - - std::vector tmp((ne0/2)*(ne1/2)); - - const ggml_fp16_t * src = (const ggml_fp16_t *) tensor->data; - for (int i1 = 0; i1 < ne1/2; ++i1) { - for (int i0 = 0; i0 < ne0/2; ++i0) { - const float v00 = ggml_fp16_to_fp32(src[2*i0 + 2*i1*ne0]); - const float v01 = ggml_fp16_to_fp32(src[2*i0 + 1 + 2*i1*ne0]); - const float v10 = ggml_fp16_to_fp32(src[2*i0 + (2*i1+1)*ne0]); - const float v11 = ggml_fp16_to_fp32(src[2*i0 + 1 + (2*i1+1)*ne0]); + fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(ggml_fp16_t)); + } else if (name.substr(name.size() - 11) == ".mlp.0.bias") { + const int32_t ne0 = tensor->ne[0]/2; - tmp[i1*(ne0/2) + i0] = ggml_fp32_to_fp16(0.25*(v00 + v01 + v10 + v11)); - } - } + fout.write(reinterpret_cast(&ne0), sizeof(int32_t)); + fout.write(reinterpret_cast(const_cast(name.data())), length); - fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(ggml_fp16_t)); - } else if (tensor->n_dims == 3) { - const int ne0 = tensor->ne[0]; - const int ne1 = tensor->ne[1]; - const int ne2 = tensor->ne[2]; - - if (ne1 == 80) { - std::vector tmp(ne0*ne1*(ne2/2)); - - const ggml_fp16_t * src = (const ggml_fp16_t *) tensor->data; - for (int i2 = 0; i2 < ne2/2; ++i2) { - for (int i1 = 0; i1 < ne1; ++i1) { - for (int i0 = 0; i0 < ne0; ++i0) { - const float v0 = ggml_fp16_to_fp32(src[i0 + i1*ne0 + 2*i2*ne0*ne1]); - const float v1 = ggml_fp16_to_fp32(src[i0 + i1*ne0 + (2*i2+1)*ne0*ne1]); - - tmp[i0 + i1*ne0 + i2*ne0*ne1] = ggml_fp32_to_fp16(0.5*(v0 + v1)); - } - } - } + printf("name = %s, ne0 = %d\n", name.c_str(), ne0); - fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(ggml_fp16_t)); - } else { - std::vector tmp(ne0*(ne1/2)*(ne2/2)); - - const ggml_fp16_t * src = (const ggml_fp16_t *) tensor->data; - for (int i2 = 0; i2 < ne2/2; ++i2) { - for (int i1 = 0; i1 < ne1/2; ++i1) { - for (int i0 = 0; i0 < ne0; ++i0) { - const float v00 = ggml_fp16_to_fp32(src[i0 + 2*i1*ne0 + 2*i2*ne0*ne1]); - const float v01 = ggml_fp16_to_fp32(src[i0 + (2*i1+1)*ne0 + 2*i2*ne0*ne1]); - const float v10 = ggml_fp16_to_fp32(src[i0 + 2*i1*ne0 + (2*i2+1)*ne0*ne1]); - const float v11 = ggml_fp16_to_fp32(src[i0 + (2*i1+1)*ne0 + (2*i2+1)*ne0*ne1]); - - tmp[i0 + i1*ne0 + i2*ne0*(ne1/2)] = ggml_fp32_to_fp16(0.25*(v00 + v01 + v10 + v11)); - } - } - } + std::vector tmp(ne0); - fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(ggml_fp16_t)); - } - } else { - assert(false); + const float * src = (const float *) tensor->data; + for (int i0 = 0; i0 < ne0; ++i0) { + tmp[i0] = 0.5*(src[2*i0] + src[2*i0+1]); } - } else { - if (tensor->n_dims == 1) { - const int ne0 = tensor->ne[0]; - - std::vector tmp(ne0/2); - const float * src = (const float *) tensor->data; - for (int i0 = 0; i0 < ne0/2; ++i0) { - tmp[i0] = 0.5*(src[2*i0] + src[2*i0+1]); - } + fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(float)); + } else if (name.substr(name.size() - 13) == ".mlp.2.weight") { + const int32_t ne0 = tensor->ne[0]/2; + const int32_t ne1 = tensor->ne[1]; - fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(float)); - } else if (tensor->n_dims == 2) { - const int ne0 = tensor->ne[0]; - const int ne1 = tensor->ne[1]; + fout.write(reinterpret_cast(&ne0), sizeof(int32_t)); + fout.write(reinterpret_cast(&ne1), sizeof(int32_t)); + fout.write(reinterpret_cast(const_cast(name.data())), length); - if (name == "encoder.positional_embedding" || name == "decoder.positional_embedding") { - std::vector tmp((ne0/2)*ne1); + printf("name = %s, ne0 = %d, ne1 = %d\n", name.c_str(), ne0, ne1); - const float * src = (const float *) tensor->data; - for (int i1 = 0; i1 < ne1; ++i1) { - for (int i0 = 0; i0 < ne0/2; ++i0) { - tmp[i0 + i1*(ne0/2)] = 0.5*(src[2*i0 + i1*ne0] + src[2*i0 + 1 + i1*ne0]); - } - } + std::vector tmp(ne0*ne1); - fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(float)); - } else if (name == "encoder.conv1.bias" || name == "encoder.conv2.bias") { - std::vector tmp(ne0*(ne1/2)); + const ggml_fp16_t * src = (const ggml_fp16_t *) tensor->data; + for (int i1 = 0; i1 < ne1; ++i1) { + for (int i0 = 0; i0 < ne0; ++i0) { + const float v00 = ggml_fp16_to_fp32(src[2*i0 + i1*ne0]); + const float v01 = ggml_fp16_to_fp32(src[2*i0 + 1 + i1*ne0]); - const float * src = (const float *) tensor->data; - for (int i1 = 0; i1 < ne1/2; ++i1) { - for (int i0 = 0; i0 < ne0; ++i0) { - tmp[i0 + i1*ne0] = 0.5*(src[i0 + 2*i1*ne0] + src[i0 + (2*i1+1)*ne0]); - } - } - - fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(float)); - } else { - std::vector tmp((ne0/2)*(ne1/2)); + tmp[i0 + i1*ne0] = ggml_fp32_to_fp16(0.5*(v00 + v01)); + } + } - const float * src = (const float *) tensor->data; - for (int i1 = 0; i1 < ne1/2; ++i1) { - for (int i0 = 0; i0 < ne0/2; ++i0) { - const float v00 = src[2*i0 + 2*i1*ne0]; - const float v01 = src[2*i0 + 1 + 2*i1*ne0]; - const float v10 = src[2*i0 + (2*i1+1)*ne0]; - const float v11 = src[2*i0 + 1 + (2*i1+1)*ne0]; + fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(ggml_fp16_t)); + } else { + for (int i = 0; i < n_dims; ++i) { + const int32_t ne = tensor->ne[i]; + fout.write(reinterpret_cast(const_cast(&ne)), sizeof(ne)); + } - tmp[i1*(ne0/2) + i0] = 0.25*(v00 + v01 + v10 + v11); - } - } + fout.write(reinterpret_cast(const_cast(name.data())), length); + //printf("name = %s, ne = %d, %d, %d, %d\n", name.c_str(), tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); - fout.write(reinterpret_cast(tmp.data()), tmp.size()*sizeof(float)); - } - } else { - assert(false); - } + fout.write(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); } } }