@ -96,6 +96,17 @@ main: total time = 908.15 ms
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples` .
For detailed usage instructions, run: `./main -h`
Note that `whisper.cpp` currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
For example, you can use `ffmpeg` like this:
```java
ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
```
## More audio samples
If you want some extra audio samples to play with, simply run:
```
@ -118,14 +129,7 @@ make medium
make large
```
For detailed usage instructions, run: `./main -h`
Note that `whisper.cpp` runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
For example, you can use `ffmpeg` like this:
```java
ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
```
## Another example
Here is another example of transcribing a [3:24 min speech ](https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg ) in less than a minute, using `medium.en` model: