From 0b2dc3c82c725e32fcdbad110f8459bb516fe869 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 29 Oct 2022 12:24:02 +0300 Subject: [PATCH] parallel : working --- examples/CMakeLists.txt | 1 + examples/main/main.cpp | 1 - examples/parallel/parallel.cpp | 24 +++- ggml.h | 2 +- whisper.cpp | 242 ++++++++++++++++++++++++--------- whisper.h | 10 +- 6 files changed, 207 insertions(+), 73 deletions(-) diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 0c1a43a..629064e 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -22,6 +22,7 @@ if (EMSCRIPTEN) add_subdirectory(whisper.wasm) else() add_subdirectory(main) + add_subdirectory(parallel) add_subdirectory(stream) add_subdirectory(bench) endif() diff --git a/examples/main/main.cpp b/examples/main/main.cpp index b0d576f..1cf1d0a 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -384,7 +384,6 @@ int main(int argc, char ** argv) { wparams.translate = params.translate; wparams.language = params.language.c_str(); wparams.n_threads = params.n_threads; - wparams.n_processors = 1; wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx; wparams.offset_ms = params.offset_t_ms; diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index 91e4a37..df4a58a 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -38,10 +38,12 @@ std::string to_timestamp(int64_t t, bool comma = false) { // command-line parameters struct whisper_params { - int32_t seed = -1; // RNG seed, not used currently - int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); - int32_t offset_t_ms = 0; - int32_t offset_n = 0; + int32_t seed = -1; // RNG seed, not used currently + int32_t n_threads = std::max(std::min(4, (int32_t) std::thread::hardware_concurrency()) / 2, 1); + int32_t n_processors = 2; + int32_t offset_t_ms = 0; + int32_t offset_n = 0; + int32_t max_context = -1; bool verbose = false; bool translate = false; @@ -73,10 +75,14 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { params.seed = std::stoi(argv[++i]); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); + } else if (arg == "-p" || arg == "--processors") { + params.n_processors = std::stoi(argv[++i]); } else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(argv[++i]); } else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(argv[++i]); + } else if (arg == "-mc" || arg == "--max-context") { + params.max_context = std::stoi(argv[++i]); } else if (arg == "-v" || arg == "--verbose") { params.verbose = true; } else if (arg == "--translate") { @@ -125,8 +131,10 @@ void whisper_print_usage(int argc, char ** argv, const whisper_params & params) fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); + fprintf(stderr, " -p N, --processors N number of processors to use during computation (default: %d)\n", params.n_processors); fprintf(stderr, " -ot N, --offset-t N time offset in milliseconds (default: %d)\n", params.offset_t_ms); fprintf(stderr, " -on N, --offset-n N segment index offset (default: %d)\n", params.offset_n); + fprintf(stderr, " -mc N, --max-context N maximum number of text context tokens to store (default: max)\n"); fprintf(stderr, " -v, --verbose verbose output\n"); fprintf(stderr, " --translate translate from source language to english\n"); fprintf(stderr, " -otxt, --output-txt output result in a text file\n"); @@ -359,8 +367,9 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); } } - fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n", - __func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE, params.n_threads, + fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n", + __func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE, + params.n_threads, params.n_processors, params.language.c_str(), params.translate ? "translate" : "transcribe", params.no_timestamps ? 0 : 1); @@ -380,6 +389,7 @@ int main(int argc, char ** argv) { wparams.translate = params.translate; wparams.language = params.language.c_str(); wparams.n_threads = params.n_threads; + wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx; wparams.offset_ms = params.offset_t_ms; // this callback is called on each new segment @@ -388,7 +398,7 @@ int main(int argc, char ** argv) { wparams.new_segment_callback_user_data = ¶ms; } - if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { + if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) { fprintf(stderr, "%s: failed to process audio\n", argv[0]); return 8; } diff --git a/ggml.h b/ggml.h index f81fbc5..f92ae73 100644 --- a/ggml.h +++ b/ggml.h @@ -11,7 +11,7 @@ extern "C" { #define GGML_MAX_DIMS 4 #define GGML_MAX_NODES 4096 #define GGML_MAX_PARAMS 16 -#define GGML_MAX_CONTEXTS 16 +#define GGML_MAX_CONTEXTS 64 #define GGML_MAX_OPT 4 #ifdef __ARM_NEON diff --git a/whisper.cpp b/whisper.cpp index 168182f..ff8e1b0 100644 --- a/whisper.cpp +++ b/whisper.cpp @@ -379,6 +379,7 @@ struct whisper_model { // context struct ggml_context * ctx; + struct ggml_context * ctx_mem; // tensors int n_loaded; @@ -393,9 +394,10 @@ struct whisper_context { int64_t t_decode_us = 0; int64_t t_start_us = 0; - std::vector buf_model; - std::vector buf_compute; - std::vector buf_compute_layer; + std::vector * buf_model; // the model buffer is read-only and can be shared between processors + std::vector buf_memory; + std::vector buf_compute; + std::vector buf_compute_layer; whisper_model model; whisper_vocab vocab; @@ -421,7 +423,7 @@ struct whisper_context { // // see the convert-pt-to-ggml.py script for details // -bool whisper_model_load(const std::string & fname, const int n_processors, whisper_context & wctx) { +bool whisper_model_load(const std::string & fname, whisper_context & wctx) { fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str()); auto & model = wctx.model; @@ -494,13 +496,16 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16); fprintf(stderr, "%s: type = %d\n", __func__, model.type); - wctx.buf_model.resize(MEM_REQ_MODEL.at(model.type)); + wctx.buf_model = new std::vector(); + wctx.buf_model->resize(MEM_REQ_MODEL.at(model.type)); + wctx.buf_memory.resize(std::max(MEM_REQ_MODEL.at(model.type), MEM_REQ_MODEL.at(model.type))); // TODO: TMP !!! wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type))); wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type))); // this is the total memory required to run the inference const size_t mem_required = - wctx.buf_model.size() + + wctx.buf_model->size() + + wctx.buf_memory.size() + wctx.buf_compute.size() + wctx.buf_compute_layer.size(); @@ -583,6 +588,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp size_t ctx_size = 0; + size_t ctx_mem_size = 0; { const auto & hparams = model.hparams; @@ -691,11 +697,11 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b } - ctx_size += n_processors*n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k - ctx_size += n_processors*n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v + ctx_mem_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k + ctx_mem_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v - ctx_size += n_processors*n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k - ctx_size += n_processors*n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v + ctx_mem_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k + ctx_mem_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead @@ -705,8 +711,8 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp // create the ggml context { struct ggml_init_params params = { - .mem_size = wctx.buf_model.size(), - .mem_buffer = wctx.buf_model.data(), + .mem_size = wctx.buf_model->size(), + .mem_buffer = wctx.buf_model->data(), }; model.ctx = ggml_init(params); @@ -716,6 +722,20 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp } } + // create the ggml memory context + { + struct ggml_init_params params = { + .mem_size = wctx.buf_memory.size(), + .mem_buffer = wctx.buf_memory.data(), + }; + + model.ctx_mem = ggml_init(params); + if (!model.ctx_mem) { + fprintf(stderr, "%s: ggml_init() failed\n", __func__); + return false; + } + } + // prepare memory for the weights { auto & ctx = model.ctx; @@ -914,7 +934,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp // key + value memory { - auto & ctx = model.ctx; + auto & ctx = model.ctx_mem; const auto & hparams = model.hparams; @@ -925,7 +945,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp // key/value memory for the self-attention layer { const int n_mem = n_text_layer*n_text_ctx; - const int n_elements = n_text_state*n_mem*n_processors; + const int n_elements = n_text_state*n_mem; model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); @@ -936,7 +956,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp const int n_audio_ctx = hparams.n_audio_ctx; const int n_mem = n_text_layer*n_audio_ctx; - const int n_elements = n_text_state*n_mem*n_processors; + const int n_elements = n_text_state*n_mem; model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); @@ -946,7 +966,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); - fprintf(stderr, "%s: memory size = %8.2f MB (%d processors)\n", __func__, memory_size/1024.0/1024.0, n_processors); + fprintf(stderr, "%s: memory size = %8.2f MB\n", __func__, memory_size/1024.0/1024.0); } // load weights @@ -1037,8 +1057,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp bool whisper_encode( whisper_context & wctx, const int n_threads, - const int mel_offset, - const int processor_id) { + const int mel_offset) { const auto & model = wctx.model; const auto & mel_inp = wctx.mel; const auto & hparams = model.hparams; @@ -1392,11 +1411,8 @@ bool whisper_encode( Vcross), Vcross); - const size_t offset_k = processor_id*(ggml_element_size(model.memory_cross_k)*n_state)*(model.hparams.n_text_layer*n_ctx); - const size_t offset_v = processor_id*(ggml_element_size(model.memory_cross_v)*n_state)*(model.hparams.n_text_layer*n_ctx); - - struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, offset_k + (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx)); - struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, offset_v + (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx)); + struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx)); + struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); @@ -1429,8 +1445,7 @@ bool whisper_decode( const int n_threads, const whisper_token * tokens, const int n_tokens, - const int n_past, - const int processor_id) { + const int n_past) { const auto & model = wctx.model; const auto & hparams = model.hparams; @@ -1525,13 +1540,10 @@ bool whisper_decode( Vcur), Vcur); - const size_t offset_k = processor_id*(ggml_element_size(model.memory_k)*n_state)*(n_layer*n_ctx); - const size_t offset_v = processor_id*(ggml_element_size(model.memory_v)*n_state)*(n_layer*n_ctx); - // store key and value to memory { - struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, offset_k + (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past)); - struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, offset_v + (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past)); + struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past)); + struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past)); ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v)); @@ -1549,7 +1561,7 @@ bool whisper_decode( struct ggml_tensor * K = ggml_permute(ctxL, ggml_reshape_3d(ctxL, - ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, offset_k + il*n_ctx*ggml_element_size(model.memory_k)*n_state), + ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state), n_state/n_head, n_head, n_past + N), 0, 2, 1, 3); @@ -1569,7 +1581,7 @@ bool whisper_decode( struct ggml_tensor * V_trans = ggml_permute(ctxL, ggml_reshape_3d(ctxL, - ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, offset_v + il*n_ctx*ggml_element_size(model.memory_v)*n_state), + ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state), n_state/n_head, n_head, n_past + N), 1, 2, 0, 3); @@ -1621,18 +1633,15 @@ bool whisper_decode( Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); - const size_t offset_k = processor_id*(ggml_element_size(model.memory_cross_k)*n_state)*(n_layer*M); - const size_t offset_v = processor_id*(ggml_element_size(model.memory_cross_v)*n_state)*(n_layer*M); - // Kcross is already scaled struct ggml_tensor * Kcross = ggml_reshape_3d(ctxL, - ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, offset_k + il*M*ggml_element_size(model.memory_cross_k)*n_state), + ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state), n_state/n_head, n_head, M); struct ggml_tensor * Vcross = ggml_reshape_3d(ctxL, - ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, offset_v + il*M*ggml_element_size(model.memory_cross_v)*n_state), + ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state), n_state/n_head, n_head, M); // ------ @@ -2118,26 +2127,7 @@ struct whisper_context * whisper_init(const char * path_model) { ctx->t_start_us = t_start_us; - if (!whisper_model_load(path_model, 1, *ctx)) { - fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model); - return NULL; - } - - ctx->t_load_us = ggml_time_us() - t_start_us; - - return ctx; -} - -struct whisper_context * whisper_init_parallel(const char * path_model, int n_processors) { - ggml_time_init(); - - whisper_context * ctx = new whisper_context; - - const int64_t t_start_us = ggml_time_us(); - - ctx->t_start_us = t_start_us; - - if (!whisper_model_load(path_model, n_processors, *ctx)) { + if (!whisper_model_load(path_model, *ctx)) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model); return NULL; } @@ -2149,6 +2139,9 @@ struct whisper_context * whisper_init_parallel(const char * path_model, int n_pr void whisper_free(struct whisper_context * ctx) { if (ctx) { + if (ctx->buf_model) { + delete ctx->buf_model; + } delete ctx; } } @@ -2188,7 +2181,7 @@ int whisper_set_mel( int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) { const int64_t t_start_us = ggml_time_us(); - if (!whisper_encode(*ctx, n_threads, offset, 0)) { + if (!whisper_encode(*ctx, n_threads, offset)) { fprintf(stderr, "%s: failed to eval\n", __func__); return -1; } @@ -2201,7 +2194,7 @@ int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) { int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) { const int64_t t_start_us = ggml_time_us(); - if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past, 0)) { + if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } @@ -2322,7 +2315,6 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str /*.strategy =*/ WHISPER_SAMPLING_GREEDY, /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()), - /*.n_processors =*/ 1, /*.n_max_text_ctx =*/ 16384, /*.offset_ms =*/ 0, @@ -2355,7 +2347,6 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str /*.strategy =*/ WHISPER_SAMPLING_BEAM_SEARCH, /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()), - /*.n_processors =*/ 1, /*.n_max_text_ctx =*/ 16384, /*.offset_ms =*/ 0, @@ -2629,6 +2620,135 @@ int whisper_full( return 0; } +int whisper_full_parallel( + struct whisper_context * ctx, + struct whisper_full_params params, + const float * samples, + int n_samples, + const int n_processors) { + if (n_processors == 1) { + return whisper_full(ctx, params, samples, n_samples); + } + + int ret = 0; + + // prepare separate contexts for each thread + std::vector ctxs(n_processors - 1); + + for (int i = 0; i < n_processors - 1; ++i) { + ctxs[i] = *ctx; + + auto & model = ctxs[i].model; + + // create the ggml memory context + { + struct ggml_init_params params = { + .mem_size = ctxs[i].buf_memory.size(), + .mem_buffer = ctxs[i].buf_memory.data(), + }; + + model.ctx_mem = ggml_init(params); + if (!model.ctx_mem) { + fprintf(stderr, "%s: ggml_init() failed\n", __func__); + return false; + } + } + + // separate key + value memory for each processor + { + auto & ctx = model.ctx_mem; + + const auto & hparams = model.hparams; + + const int n_text_state = hparams.n_text_state; + const int n_text_layer = hparams.n_text_layer; + const int n_text_ctx = hparams.n_text_ctx; + + // key/value memory for the self-attention layer + { + const int n_mem = n_text_layer*n_text_ctx; + const int n_elements = n_text_state*n_mem; + + model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); + model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); + } + + // key/value memory for the cross-attention layer + { + const int n_audio_ctx = hparams.n_audio_ctx; + + const int n_mem = n_text_layer*n_audio_ctx; + const int n_elements = n_text_state*n_mem; + + model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); + model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); + } + + const size_t memory_size = + ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + + ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); + } + } + + const int offset_samples = (WHISPER_SAMPLE_RATE*params.offset_ms)/1000; + const int n_samples_per_processor = (n_samples - offset_samples)/n_processors; + + // the calling thread will process the first chunk + // while the other threads will process the remaining chunks + + std::vector workers(n_processors - 1); + for (int i = 0; i < n_processors - 1; ++i) { + const int start_samples = offset_samples + (i + 1)*n_samples_per_processor; + const int n_samples_cur = (i == n_processors - 2) ? n_samples - start_samples : n_samples_per_processor; + + auto params_cur = params; + + params_cur.offset_ms = 0; + params_cur.print_progress = false; + params_cur.print_realtime = false; + + params_cur.new_segment_callback = nullptr; + params_cur.new_segment_callback_user_data = nullptr; + + workers[i] = std::thread(whisper_full, &ctxs[i], std::move(params_cur), samples + start_samples, n_samples_cur); + } + + { + auto params_cur = params; + + ret = whisper_full(ctx, std::move(params_cur), samples, offset_samples + n_samples_per_processor); + } + + for (int i = 0; i < n_processors - 1; ++i) { + workers[i].join(); + } + + const int64_t offset_t = (int64_t) params.offset_ms/10.0; + + // combine results into ctx->result_all + for (int i = 0; i < n_processors - 1; ++i) { + auto & result_all = ctxs[i].result_all; + + for (int j = 0; j < (int) result_all.size(); ++j) { + result_all[j].t0 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t; + result_all[j].t1 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t; + + if (ctx->result_all.size() > 0) { + result_all[j].t0 = std::max(result_all[j].t0, ctx->result_all.back().t1); + } + + ctx->result_all.push_back(std::move(result_all[j])); + + // call the new_segment_callback for each segment + if (params.new_segment_callback) { + params.new_segment_callback(ctx, params.new_segment_callback_user_data); + } + } + } + + return ret; +} + int whisper_full_n_segments(struct whisper_context * ctx) { return ctx->result_all.size(); } diff --git a/whisper.h b/whisper.h index 9368e25..0016d0d 100644 --- a/whisper.h +++ b/whisper.h @@ -80,8 +80,6 @@ extern "C" { // Returns NULL on failure. WHISPER_API struct whisper_context * whisper_init(const char * path_model); - WHISPER_API struct whisper_context * whisper_init_parallel(const char * path_model, int n_processors); - // Frees all memory allocated by the model. WHISPER_API void whisper_free(struct whisper_context * ctx); @@ -179,7 +177,6 @@ extern "C" { enum whisper_sampling_strategy strategy; int n_threads; - int n_processors; int n_max_text_ctx; int offset_ms; @@ -216,6 +213,13 @@ extern "C" { const float * samples, int n_samples); + WHISPER_API int whisper_full_parallel( + struct whisper_context * ctx, + struct whisper_full_params params, + const float * samples, + int n_samples, + const int n_processors); + // Number of generated text segments. // A segment can be a few words, a sentence, or even a paragraph. WHISPER_API int whisper_full_n_segments(struct whisper_context * ctx);