pytorch-image-models/timm/models/dpn.py

373 lines
14 KiB

""" PyTorch implementation of DualPathNetworks
Based on original MXNet implementation https://github.com/cypw/DPNs with
many ideas from another PyTorch implementation https://github.com/oyam/pytorch-DPNs.
This implementation is compatible with the pretrained weights from cypw's MXNet implementation.
Hacked together by / Copyright 2020 Ross Wightman
"""
from collections import OrderedDict
from functools import partial
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DPN_MEAN, IMAGENET_DPN_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import BatchNormAct2d, ConvNormAct, create_conv2d, create_classifier, get_norm_act_layer
from ._builder import build_model_with_cfg
from ._registry import register_model
__all__ = ['DPN']
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DPN_MEAN, 'std': IMAGENET_DPN_STD,
'first_conv': 'features.conv1_1.conv', 'classifier': 'classifier',
**kwargs
}
default_cfgs = {
'dpn48b': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
'dpn68': _cfg(
url='https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn68-66bebafa7.pth'),
'dpn68b': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dpn68b_ra-a31ca160.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
'dpn92': _cfg(
url='https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn92_extra-b040e4a9b.pth'),
'dpn98': _cfg(
url='https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn98-5b90dec4d.pth'),
'dpn131': _cfg(
url='https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn131-71dfe43e0.pth'),
'dpn107': _cfg(
url='https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn107_extra-1ac7121e2.pth')
}
class CatBnAct(nn.Module):
def __init__(self, in_chs, norm_layer=BatchNormAct2d):
super(CatBnAct, self).__init__()
self.bn = norm_layer(in_chs, eps=0.001)
@torch.jit._overload_method # noqa: F811
def forward(self, x):
# type: (Tuple[torch.Tensor, torch.Tensor]) -> (torch.Tensor)
pass
@torch.jit._overload_method # noqa: F811
def forward(self, x):
# type: (torch.Tensor) -> (torch.Tensor)
pass
def forward(self, x):
if isinstance(x, tuple):
x = torch.cat(x, dim=1)
return self.bn(x)
class BnActConv2d(nn.Module):
def __init__(self, in_chs, out_chs, kernel_size, stride, groups=1, norm_layer=BatchNormAct2d):
super(BnActConv2d, self).__init__()
self.bn = norm_layer(in_chs, eps=0.001)
self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, groups=groups)
def forward(self, x):
return self.conv(self.bn(x))
class DualPathBlock(nn.Module):
def __init__(
self,
in_chs,
num_1x1_a,
num_3x3_b,
num_1x1_c,
inc,
groups,
block_type='normal',
b=False,
):
super(DualPathBlock, self).__init__()
self.num_1x1_c = num_1x1_c
self.inc = inc
self.b = b
if block_type == 'proj':
self.key_stride = 1
self.has_proj = True
elif block_type == 'down':
self.key_stride = 2
self.has_proj = True
else:
assert block_type == 'normal'
self.key_stride = 1
self.has_proj = False
self.c1x1_w_s1 = None
self.c1x1_w_s2 = None
if self.has_proj:
# Using different member names here to allow easier parameter key matching for conversion
if self.key_stride == 2:
self.c1x1_w_s2 = BnActConv2d(
in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=2)
else:
self.c1x1_w_s1 = BnActConv2d(
in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=1)
self.c1x1_a = BnActConv2d(in_chs=in_chs, out_chs=num_1x1_a, kernel_size=1, stride=1)
self.c3x3_b = BnActConv2d(
in_chs=num_1x1_a, out_chs=num_3x3_b, kernel_size=3, stride=self.key_stride, groups=groups)
if b:
self.c1x1_c = CatBnAct(in_chs=num_3x3_b)
self.c1x1_c1 = create_conv2d(num_3x3_b, num_1x1_c, kernel_size=1)
self.c1x1_c2 = create_conv2d(num_3x3_b, inc, kernel_size=1)
else:
self.c1x1_c = BnActConv2d(in_chs=num_3x3_b, out_chs=num_1x1_c + inc, kernel_size=1, stride=1)
self.c1x1_c1 = None
self.c1x1_c2 = None
@torch.jit._overload_method # noqa: F811
def forward(self, x):
# type: (Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]
pass
@torch.jit._overload_method # noqa: F811
def forward(self, x):
# type: (torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]
pass
def forward(self, x) -> Tuple[torch.Tensor, torch.Tensor]:
if isinstance(x, tuple):
x_in = torch.cat(x, dim=1)
else:
x_in = x
if self.c1x1_w_s1 is None and self.c1x1_w_s2 is None:
# self.has_proj == False, torchscript requires condition on module == None
x_s1 = x[0]
x_s2 = x[1]
else:
# self.has_proj == True
if self.c1x1_w_s1 is not None:
# self.key_stride = 1
x_s = self.c1x1_w_s1(x_in)
else:
# self.key_stride = 2
x_s = self.c1x1_w_s2(x_in)
x_s1 = x_s[:, :self.num_1x1_c, :, :]
x_s2 = x_s[:, self.num_1x1_c:, :, :]
x_in = self.c1x1_a(x_in)
x_in = self.c3x3_b(x_in)
x_in = self.c1x1_c(x_in)
if self.c1x1_c1 is not None:
# self.b == True, using None check for torchscript compat
out1 = self.c1x1_c1(x_in)
out2 = self.c1x1_c2(x_in)
else:
out1 = x_in[:, :self.num_1x1_c, :, :]
out2 = x_in[:, self.num_1x1_c:, :, :]
resid = x_s1 + out1
dense = torch.cat([x_s2, out2], dim=1)
return resid, dense
class DPN(nn.Module):
def __init__(
self,
k_sec=(3, 4, 20, 3),
inc_sec=(16, 32, 24, 128),
k_r=96,
groups=32,
num_classes=1000,
in_chans=3,
output_stride=32,
global_pool='avg',
small=False,
num_init_features=64,
b=False,
drop_rate=0.,
norm_layer='batchnorm2d',
act_layer='relu',
fc_act_layer='elu',
):
super(DPN, self).__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
self.b = b
assert output_stride == 32 # FIXME look into dilation support
norm_layer = partial(get_norm_act_layer(norm_layer, act_layer=act_layer), eps=.001)
fc_norm_layer = partial(get_norm_act_layer(norm_layer, act_layer=fc_act_layer), eps=.001, inplace=False)
bw_factor = 1 if small else 4
blocks = OrderedDict()
# conv1
blocks['conv1_1'] = ConvNormAct(
in_chans, num_init_features, kernel_size=3 if small else 7, stride=2, norm_layer=norm_layer)
blocks['conv1_pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.feature_info = [dict(num_chs=num_init_features, reduction=2, module='features.conv1_1')]
# conv2
bw = 64 * bw_factor
inc = inc_sec[0]
r = (k_r * bw) // (64 * bw_factor)
blocks['conv2_1'] = DualPathBlock(num_init_features, r, r, bw, inc, groups, 'proj', b)
in_chs = bw + 3 * inc
for i in range(2, k_sec[0] + 1):
blocks['conv2_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b)
in_chs += inc
self.feature_info += [dict(num_chs=in_chs, reduction=4, module=f'features.conv2_{k_sec[0]}')]
# conv3
bw = 128 * bw_factor
inc = inc_sec[1]
r = (k_r * bw) // (64 * bw_factor)
blocks['conv3_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b)
in_chs = bw + 3 * inc
for i in range(2, k_sec[1] + 1):
blocks['conv3_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b)
in_chs += inc
self.feature_info += [dict(num_chs=in_chs, reduction=8, module=f'features.conv3_{k_sec[1]}')]
# conv4
bw = 256 * bw_factor
inc = inc_sec[2]
r = (k_r * bw) // (64 * bw_factor)
blocks['conv4_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b)
in_chs = bw + 3 * inc
for i in range(2, k_sec[2] + 1):
blocks['conv4_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b)
in_chs += inc
self.feature_info += [dict(num_chs=in_chs, reduction=16, module=f'features.conv4_{k_sec[2]}')]
# conv5
bw = 512 * bw_factor
inc = inc_sec[3]
r = (k_r * bw) // (64 * bw_factor)
blocks['conv5_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b)
in_chs = bw + 3 * inc
for i in range(2, k_sec[3] + 1):
blocks['conv5_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b)
in_chs += inc
self.feature_info += [dict(num_chs=in_chs, reduction=32, module=f'features.conv5_{k_sec[3]}')]
blocks['conv5_bn_ac'] = CatBnAct(in_chs, norm_layer=fc_norm_layer)
self.num_features = in_chs
self.features = nn.Sequential(blocks)
# Using 1x1 conv for the FC layer to allow the extra pooling scheme
self.global_pool, self.classifier = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool, use_conv=True)
self.flatten = nn.Flatten(1) if global_pool else nn.Identity()
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^features\.conv1',
blocks=[
(r'^features\.conv(\d+)' if coarse else r'^features\.conv(\d+)_(\d+)', None),
(r'^features\.conv5_bn_ac', (99999,))
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
assert not enable, 'gradient checkpointing not supported'
@torch.jit.ignore
def get_classifier(self):
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool, self.classifier = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool, use_conv=True)
self.flatten = nn.Flatten(1) if global_pool else nn.Identity()
def forward_features(self, x):
return self.features(x)
def forward_head(self, x, pre_logits: bool = False):
x = self.global_pool(x)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
if pre_logits:
return x.flatten(1)
else:
x = self.classifier(x)
return self.flatten(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_dpn(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
DPN, variant, pretrained,
feature_cfg=dict(feature_concat=True, flatten_sequential=True),
**kwargs)
@register_model
def dpn48b(pretrained=False, **kwargs):
model_kwargs = dict(
small=True, num_init_features=10, k_r=128, groups=32,
b=True, k_sec=(3, 4, 6, 3), inc_sec=(16, 32, 32, 64), act_layer='silu')
return _create_dpn('dpn48b', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model
def dpn68(pretrained=False, **kwargs):
model_kwargs = dict(
small=True, num_init_features=10, k_r=128, groups=32,
k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64))
return _create_dpn('dpn68', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model
def dpn68b(pretrained=False, **kwargs):
model_kwargs = dict(
small=True, num_init_features=10, k_r=128, groups=32,
b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64))
return _create_dpn('dpn68b', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model
def dpn92(pretrained=False, **kwargs):
model_kwargs = dict(
num_init_features=64, k_r=96, groups=32,
k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128))
return _create_dpn('dpn92', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model
def dpn98(pretrained=False, **kwargs):
model_kwargs = dict(
num_init_features=96, k_r=160, groups=40,
k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128))
return _create_dpn('dpn98', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model
def dpn131(pretrained=False, **kwargs):
model_kwargs = dict(
num_init_features=128, k_r=160, groups=40,
k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128))
return _create_dpn('dpn131', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model
def dpn107(pretrained=False, **kwargs):
model_kwargs = dict(
num_init_features=128, k_r=200, groups=50,
k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128))
return _create_dpn('dpn107', pretrained=pretrained, **dict(model_kwargs, **kwargs))