You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/optim/optim_factory.py

73 lines
2.7 KiB

from torch import optim as optim
from timm.optim import Nadam, RMSpropTF, AdamW, RAdam, NovoGrad, Lookahead
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
no_decay.append(param)
else:
decay.append(param)
return [
{'params': no_decay, 'weight_decay': 0.},
{'params': decay, 'weight_decay': weight_decay}]
def create_optimizer(args, model, filter_bias_and_bn=True):
opt_lower = args.opt.lower()
weight_decay = args.weight_decay
if opt_lower == 'adamw' or opt_lower == 'radam':
# compensate for the way current AdamW and RAdam optimizers
# apply the weight-decay
weight_decay /= args.lr
if weight_decay and filter_bias_and_bn:
parameters = add_weight_decay(model, weight_decay)
weight_decay = 0.
else:
parameters = model.parameters()
opt_split = opt_lower.split('_')
opt_lower = opt_split[-1]
if opt_lower == 'sgd':
optimizer = optim.SGD(
parameters, lr=args.lr,
momentum=args.momentum, weight_decay=weight_decay, nesterov=True)
elif opt_lower == 'adam':
optimizer = optim.Adam(
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
elif opt_lower == 'adamw':
optimizer = AdamW(
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
elif opt_lower == 'nadam':
optimizer = Nadam(
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
elif opt_lower == 'radam':
optimizer = RAdam(
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
elif opt_lower == 'adadelta':
optimizer = optim.Adadelta(
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
elif opt_lower == 'rmsprop':
optimizer = optim.RMSprop(
parameters, lr=args.lr, alpha=0.9, eps=args.opt_eps,
momentum=args.momentum, weight_decay=weight_decay)
elif opt_lower == 'rmsproptf':
optimizer = RMSpropTF(
parameters, lr=args.lr, alpha=0.9, eps=args.opt_eps,
momentum=args.momentum, weight_decay=weight_decay)
elif opt_lower == 'novograd':
optimizer = NovoGrad(parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
else:
assert False and "Invalid optimizer"
raise ValueError
if len(opt_split) > 1:
if opt_split[0] == 'lookahead':
optimizer = Lookahead(optimizer)
return optimizer