751 lines
28 KiB
751 lines
28 KiB
""" Vision OutLOoker (VOLO) implementation
|
|
|
|
Paper: `VOLO: Vision Outlooker for Visual Recognition` - https://arxiv.org/abs/2106.13112
|
|
|
|
Code adapted from official impl at https://github.com/sail-sg/volo, original copyright in comment below
|
|
|
|
Modifications and additions for timm by / Copyright 2022, Ross Wightman
|
|
"""
|
|
# Copyright 2021 Sea Limited.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import math
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.utils.checkpoint import checkpoint
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
from timm.models.layers import DropPath, Mlp, to_2tuple, to_ntuple, trunc_normal_
|
|
from timm.models.registry import register_model
|
|
from timm.models.helpers import build_model_with_cfg
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url,
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
|
'crop_pct': .96, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'first_conv': 'patch_embed.conv.0', 'classifier': ('head', 'aux_head'),
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = {
|
|
'volo_d1_224': _cfg(
|
|
url='https://github.com/sail-sg/volo/releases/download/volo_1/d1_224_84.2.pth.tar',
|
|
crop_pct=0.96),
|
|
'volo_d1_384': _cfg(
|
|
url='https://github.com/sail-sg/volo/releases/download/volo_1/d1_384_85.2.pth.tar',
|
|
crop_pct=1.0, input_size=(3, 384, 384)),
|
|
'volo_d2_224': _cfg(
|
|
url='https://github.com/sail-sg/volo/releases/download/volo_1/d2_224_85.2.pth.tar',
|
|
crop_pct=0.96),
|
|
'volo_d2_384': _cfg(
|
|
url='https://github.com/sail-sg/volo/releases/download/volo_1/d2_384_86.0.pth.tar',
|
|
crop_pct=1.0, input_size=(3, 384, 384)),
|
|
'volo_d3_224': _cfg(
|
|
url='https://github.com/sail-sg/volo/releases/download/volo_1/d3_224_85.4.pth.tar',
|
|
crop_pct=0.96),
|
|
'volo_d3_448': _cfg(
|
|
url='https://github.com/sail-sg/volo/releases/download/volo_1/d3_448_86.3.pth.tar',
|
|
crop_pct=1.0, input_size=(3, 448, 448)),
|
|
'volo_d4_224': _cfg(
|
|
url='https://github.com/sail-sg/volo/releases/download/volo_1/d4_224_85.7.pth.tar',
|
|
crop_pct=0.96),
|
|
'volo_d4_448': _cfg(
|
|
url='https://github.com/sail-sg/volo/releases/download/volo_1/d4_448_86.79.pth.tar',
|
|
crop_pct=1.15, input_size=(3, 448, 448)),
|
|
'volo_d5_224': _cfg(
|
|
url='https://github.com/sail-sg/volo/releases/download/volo_1/d5_224_86.10.pth.tar',
|
|
crop_pct=0.96),
|
|
'volo_d5_448': _cfg(
|
|
url='https://github.com/sail-sg/volo/releases/download/volo_1/d5_448_87.0.pth.tar',
|
|
crop_pct=1.15, input_size=(3, 448, 448)),
|
|
'volo_d5_512': _cfg(
|
|
url='https://github.com/sail-sg/volo/releases/download/volo_1/d5_512_87.07.pth.tar',
|
|
crop_pct=1.15, input_size=(3, 512, 512)),
|
|
}
|
|
|
|
|
|
class OutlookAttention(nn.Module):
|
|
|
|
def __init__(self, dim, num_heads, kernel_size=3, padding=1, stride=1, qkv_bias=False, attn_drop=0., proj_drop=0.):
|
|
super().__init__()
|
|
head_dim = dim // num_heads
|
|
self.num_heads = num_heads
|
|
self.kernel_size = kernel_size
|
|
self.padding = padding
|
|
self.stride = stride
|
|
self.scale = head_dim ** -0.5
|
|
|
|
self.v = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.attn = nn.Linear(dim, kernel_size ** 4 * num_heads)
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
self.unfold = nn.Unfold(kernel_size=kernel_size, padding=padding, stride=stride)
|
|
self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True)
|
|
|
|
def forward(self, x):
|
|
B, H, W, C = x.shape
|
|
|
|
v = self.v(x).permute(0, 3, 1, 2) # B, C, H, W
|
|
|
|
h, w = math.ceil(H / self.stride), math.ceil(W / self.stride)
|
|
v = self.unfold(v).reshape(
|
|
B, self.num_heads, C // self.num_heads,
|
|
self.kernel_size * self.kernel_size, h * w).permute(0, 1, 4, 3, 2) # B,H,N,kxk,C/H
|
|
|
|
attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
|
|
attn = self.attn(attn).reshape(
|
|
B, h * w, self.num_heads, self.kernel_size * self.kernel_size,
|
|
self.kernel_size * self.kernel_size).permute(0, 2, 1, 3, 4) # B,H,N,kxk,kxk
|
|
attn = attn * self.scale
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).permute(0, 1, 4, 3, 2).reshape(B, C * self.kernel_size * self.kernel_size, h * w)
|
|
x = F.fold(x, output_size=(H, W), kernel_size=self.kernel_size, padding=self.padding, stride=self.stride)
|
|
|
|
x = self.proj(x.permute(0, 2, 3, 1))
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
class Outlooker(nn.Module):
|
|
def __init__(
|
|
self, dim, kernel_size, padding, stride=1, num_heads=1, mlp_ratio=3., attn_drop=0.,
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, qkv_bias=False
|
|
):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = OutlookAttention(
|
|
dim, num_heads, kernel_size=kernel_size,
|
|
padding=padding, stride=stride,
|
|
qkv_bias=qkv_bias, attn_drop=attn_drop)
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
|
|
|
|
def forward(self, x):
|
|
x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(
|
|
self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = head_dim ** -0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x):
|
|
B, H, W, C = x.shape
|
|
|
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv.unbind(0)
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, H, W, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
|
|
def __init__(
|
|
self, dim, num_heads, mlp_ratio=4., qkv_bias=False,
|
|
attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop)
|
|
|
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
|
|
|
|
def forward(self, x):
|
|
x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
return x
|
|
|
|
|
|
class ClassAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self, dim, num_heads=8, head_dim=None, qkv_bias=False, attn_drop=0., proj_drop=0.):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
if head_dim is not None:
|
|
self.head_dim = head_dim
|
|
else:
|
|
head_dim = dim // num_heads
|
|
self.head_dim = head_dim
|
|
self.scale = head_dim ** -0.5
|
|
|
|
self.kv = nn.Linear(dim, self.head_dim * self.num_heads * 2, bias=qkv_bias)
|
|
self.q = nn.Linear(dim, self.head_dim * self.num_heads, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(self.head_dim * self.num_heads, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x):
|
|
B, N, C = x.shape
|
|
|
|
kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
|
k, v = kv.unbind(0)
|
|
q = self.q(x[:, :1, :]).reshape(B, self.num_heads, 1, self.head_dim)
|
|
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
cls_embed = (attn @ v).transpose(1, 2).reshape(B, 1, self.head_dim * self.num_heads)
|
|
cls_embed = self.proj(cls_embed)
|
|
cls_embed = self.proj_drop(cls_embed)
|
|
return cls_embed
|
|
|
|
|
|
class ClassBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self, dim, num_heads, head_dim=None, mlp_ratio=4., qkv_bias=False,
|
|
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = ClassAttention(
|
|
dim, num_heads=num_heads, head_dim=head_dim, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
|
|
# NOTE: drop path for stochastic depth
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
|
|
|
def forward(self, x):
|
|
cls_embed = x[:, :1]
|
|
cls_embed = cls_embed + self.drop_path(self.attn(self.norm1(x)))
|
|
cls_embed = cls_embed + self.drop_path(self.mlp(self.norm2(cls_embed)))
|
|
return torch.cat([cls_embed, x[:, 1:]], dim=1)
|
|
|
|
|
|
def get_block(block_type, **kargs):
|
|
if block_type == 'ca':
|
|
return ClassBlock(**kargs)
|
|
|
|
|
|
def rand_bbox(size, lam, scale=1):
|
|
"""
|
|
get bounding box as token labeling (https://github.com/zihangJiang/TokenLabeling)
|
|
return: bounding box
|
|
"""
|
|
W = size[1] // scale
|
|
H = size[2] // scale
|
|
cut_rat = np.sqrt(1. - lam)
|
|
cut_w = np.int(W * cut_rat)
|
|
cut_h = np.int(H * cut_rat)
|
|
|
|
# uniform
|
|
cx = np.random.randint(W)
|
|
cy = np.random.randint(H)
|
|
|
|
bbx1 = np.clip(cx - cut_w // 2, 0, W)
|
|
bby1 = np.clip(cy - cut_h // 2, 0, H)
|
|
bbx2 = np.clip(cx + cut_w // 2, 0, W)
|
|
bby2 = np.clip(cy + cut_h // 2, 0, H)
|
|
|
|
return bbx1, bby1, bbx2, bby2
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
""" Image to Patch Embedding.
|
|
Different with ViT use 1 conv layer, we use 4 conv layers to do patch embedding
|
|
"""
|
|
|
|
def __init__(
|
|
self, img_size=224, stem_conv=False, stem_stride=1,
|
|
patch_size=8, in_chans=3, hidden_dim=64, embed_dim=384):
|
|
super().__init__()
|
|
assert patch_size in [4, 8, 16]
|
|
if stem_conv:
|
|
self.conv = nn.Sequential(
|
|
nn.Conv2d(in_chans, hidden_dim, kernel_size=7, stride=stem_stride, padding=3, bias=False), # 112x112
|
|
nn.BatchNorm2d(hidden_dim),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), # 112x112
|
|
nn.BatchNorm2d(hidden_dim),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), # 112x112
|
|
nn.BatchNorm2d(hidden_dim),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
else:
|
|
self.conv = None
|
|
|
|
self.proj = nn.Conv2d(
|
|
hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride)
|
|
self.num_patches = (img_size // patch_size) * (img_size // patch_size)
|
|
|
|
def forward(self, x):
|
|
if self.conv is not None:
|
|
x = self.conv(x)
|
|
x = self.proj(x) # B, C, H, W
|
|
return x
|
|
|
|
|
|
class Downsample(nn.Module):
|
|
""" Image to Patch Embedding, downsampling between stage1 and stage2
|
|
"""
|
|
|
|
def __init__(self, in_embed_dim, out_embed_dim, patch_size=2):
|
|
super().__init__()
|
|
self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=patch_size, stride=patch_size)
|
|
|
|
def forward(self, x):
|
|
x = x.permute(0, 3, 1, 2)
|
|
x = self.proj(x) # B, C, H, W
|
|
x = x.permute(0, 2, 3, 1)
|
|
return x
|
|
|
|
|
|
def outlooker_blocks(
|
|
block_fn, index, dim, layers, num_heads=1, kernel_size=3, padding=1, stride=2,
|
|
mlp_ratio=3., qkv_bias=False, attn_drop=0, drop_path_rate=0., **kwargs):
|
|
"""
|
|
generate outlooker layer in stage1
|
|
return: outlooker layers
|
|
"""
|
|
blocks = []
|
|
for block_idx in range(layers[index]):
|
|
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
|
|
blocks.append(
|
|
block_fn(
|
|
dim, kernel_size=kernel_size, padding=padding,
|
|
stride=stride, num_heads=num_heads, mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias, attn_drop=attn_drop, drop_path=block_dpr))
|
|
blocks = nn.Sequential(*blocks)
|
|
return blocks
|
|
|
|
|
|
def transformer_blocks(
|
|
block_fn, index, dim, layers, num_heads, mlp_ratio=3.,
|
|
qkv_bias=False, attn_drop=0, drop_path_rate=0., **kwargs):
|
|
"""
|
|
generate transformer layers in stage2
|
|
return: transformer layers
|
|
"""
|
|
blocks = []
|
|
for block_idx in range(layers[index]):
|
|
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
|
|
blocks.append(
|
|
block_fn(
|
|
dim, num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
attn_drop=attn_drop,
|
|
drop_path=block_dpr))
|
|
blocks = nn.Sequential(*blocks)
|
|
return blocks
|
|
|
|
|
|
class VOLO(nn.Module):
|
|
"""
|
|
Vision Outlooker, the main class of our model
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
layers,
|
|
img_size=224,
|
|
in_chans=3,
|
|
num_classes=1000,
|
|
global_pool='token',
|
|
patch_size=8,
|
|
stem_hidden_dim=64,
|
|
embed_dims=None,
|
|
num_heads=None,
|
|
downsamples=(True, False, False, False),
|
|
outlook_attention=(True, False, False, False),
|
|
mlp_ratio=3.0,
|
|
qkv_bias=False,
|
|
drop_rate=0.,
|
|
attn_drop_rate=0.,
|
|
drop_path_rate=0.,
|
|
norm_layer=nn.LayerNorm,
|
|
post_layers=('ca', 'ca'),
|
|
use_aux_head=True,
|
|
use_mix_token=False,
|
|
pooling_scale=2,
|
|
):
|
|
super().__init__()
|
|
num_layers = len(layers)
|
|
mlp_ratio = to_ntuple(num_layers)(mlp_ratio)
|
|
img_size = to_2tuple(img_size)
|
|
|
|
self.num_classes = num_classes
|
|
self.global_pool = global_pool
|
|
self.mix_token = use_mix_token
|
|
self.pooling_scale = pooling_scale
|
|
self.num_features = embed_dims[-1]
|
|
if use_mix_token: # enable token mixing, see token labeling for details.
|
|
self.beta = 1.0
|
|
assert global_pool == 'token', "return all tokens if mix_token is enabled"
|
|
self.grad_checkpointing = False
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
stem_conv=True, stem_stride=2, patch_size=patch_size,
|
|
in_chans=in_chans, hidden_dim=stem_hidden_dim,
|
|
embed_dim=embed_dims[0])
|
|
|
|
# inital positional encoding, we add positional encoding after outlooker blocks
|
|
patch_grid = (img_size[0] // patch_size // pooling_scale, img_size[1] // patch_size // pooling_scale)
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, patch_grid[0], patch_grid[1], embed_dims[-1]))
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
# set the main block in network
|
|
network = []
|
|
for i in range(len(layers)):
|
|
if outlook_attention[i]:
|
|
# stage 1
|
|
stage = outlooker_blocks(
|
|
Outlooker, i, embed_dims[i], layers, num_heads[i], mlp_ratio=mlp_ratio[i],
|
|
qkv_bias=qkv_bias, attn_drop=attn_drop_rate, norm_layer=norm_layer)
|
|
network.append(stage)
|
|
else:
|
|
# stage 2
|
|
stage = transformer_blocks(
|
|
Transformer, i, embed_dims[i], layers, num_heads[i], mlp_ratio=mlp_ratio[i], qkv_bias=qkv_bias,
|
|
drop_path_rate=drop_path_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer)
|
|
network.append(stage)
|
|
|
|
if downsamples[i]:
|
|
# downsampling between two stages
|
|
network.append(Downsample(embed_dims[i], embed_dims[i + 1], 2))
|
|
|
|
self.network = nn.ModuleList(network)
|
|
|
|
# set post block, for example, class attention layers
|
|
self.post_network = None
|
|
if post_layers is not None:
|
|
self.post_network = nn.ModuleList(
|
|
[
|
|
get_block(
|
|
post_layers[i],
|
|
dim=embed_dims[-1],
|
|
num_heads=num_heads[-1],
|
|
mlp_ratio=mlp_ratio[-1],
|
|
qkv_bias=qkv_bias,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=0.,
|
|
norm_layer=norm_layer)
|
|
for i in range(len(post_layers))
|
|
])
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims[-1]))
|
|
trunc_normal_(self.cls_token, std=.02)
|
|
|
|
# set output type
|
|
if use_aux_head:
|
|
self.aux_head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
else:
|
|
self.aux_head = None
|
|
self.norm = norm_layer(self.num_features)
|
|
|
|
# Classifier head
|
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
trunc_normal_(self.pos_embed, std=.02)
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {'pos_embed', 'cls_token'}
|
|
|
|
@torch.jit.ignore
|
|
def group_matcher(self, coarse=False):
|
|
return dict(
|
|
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
|
|
blocks=[
|
|
(r'^network\.(\d+)\.(\d+)', None),
|
|
(r'^network\.(\d+)', (0,)),
|
|
],
|
|
blocks2=[
|
|
(r'^cls_token', (0,)),
|
|
(r'^post_network\.(\d+)', None),
|
|
(r'^norm', (99999,))
|
|
],
|
|
)
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
self.grad_checkpointing = enable
|
|
|
|
@torch.jit.ignore
|
|
def get_classifier(self):
|
|
return self.head
|
|
|
|
def reset_classifier(self, num_classes, global_pool=None):
|
|
self.num_classes = num_classes
|
|
if global_pool is not None:
|
|
self.global_pool = global_pool
|
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
if self.aux_head is not None:
|
|
self.aux_head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
def forward_tokens(self, x):
|
|
for idx, block in enumerate(self.network):
|
|
if idx == 2:
|
|
# add positional encoding after outlooker blocks
|
|
x = x + self.pos_embed
|
|
x = self.pos_drop(x)
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
x = checkpoint(block, x)
|
|
else:
|
|
x = block(x)
|
|
|
|
B, H, W, C = x.shape
|
|
x = x.reshape(B, -1, C)
|
|
return x
|
|
|
|
def forward_cls(self, x):
|
|
B, N, C = x.shape
|
|
cls_tokens = self.cls_token.expand(B, -1, -1)
|
|
x = torch.cat([cls_tokens, x], dim=1)
|
|
for block in self.post_network:
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
x = checkpoint(block, x)
|
|
else:
|
|
x = block(x)
|
|
return x
|
|
|
|
def forward_train(self, x):
|
|
""" A separate forward fn for training with mix_token (if a train script supports).
|
|
Combining multiple modes in as single forward with different return types is torchscript hell.
|
|
"""
|
|
x = self.patch_embed(x)
|
|
x = x.permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C
|
|
|
|
# mix token, see token labeling for details.
|
|
if self.mix_token and self.training:
|
|
lam = np.random.beta(self.beta, self.beta)
|
|
patch_h, patch_w = x.shape[1] // self.pooling_scale, x.shape[2] // self.pooling_scale
|
|
bbx1, bby1, bbx2, bby2 = rand_bbox(x.size(), lam, scale=self.pooling_scale)
|
|
temp_x = x.clone()
|
|
sbbx1, sbby1 = self.pooling_scale * bbx1, self.pooling_scale * bby1
|
|
sbbx2, sbby2 = self.pooling_scale * bbx2, self.pooling_scale * bby2
|
|
temp_x[:, sbbx1:sbbx2, sbby1:sbby2, :] = x.flip(0)[:, sbbx1:sbbx2, sbby1:sbby2, :]
|
|
x = temp_x
|
|
else:
|
|
bbx1, bby1, bbx2, bby2 = 0, 0, 0, 0
|
|
|
|
# step2: tokens learning in the two stages
|
|
x = self.forward_tokens(x)
|
|
|
|
# step3: post network, apply class attention or not
|
|
if self.post_network is not None:
|
|
x = self.forward_cls(x)
|
|
x = self.norm(x)
|
|
|
|
if self.global_pool == 'avg':
|
|
x_cls = x.mean(dim=1)
|
|
elif self.global_pool == 'token':
|
|
x_cls = x[:, 0]
|
|
else:
|
|
x_cls = x
|
|
|
|
if self.aux_head is None:
|
|
return x_cls
|
|
|
|
x_aux = self.aux_head(x[:, 1:]) # generate classes in all feature tokens, see token labeling
|
|
if not self.training:
|
|
return x_cls + 0.5 * x_aux.max(1)[0]
|
|
|
|
if self.mix_token and self.training: # reverse "mix token", see token labeling for details.
|
|
x_aux = x_aux.reshape(x_aux.shape[0], patch_h, patch_w, x_aux.shape[-1])
|
|
temp_x = x_aux.clone()
|
|
temp_x[:, bbx1:bbx2, bby1:bby2, :] = x_aux.flip(0)[:, bbx1:bbx2, bby1:bby2, :]
|
|
x_aux = temp_x
|
|
x_aux = x_aux.reshape(x_aux.shape[0], patch_h * patch_w, x_aux.shape[-1])
|
|
|
|
# return these: 1. class token, 2. classes from all feature tokens, 3. bounding box
|
|
return x_cls, x_aux, (bbx1, bby1, bbx2, bby2)
|
|
|
|
def forward_features(self, x):
|
|
x = self.patch_embed(x).permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C
|
|
|
|
# step2: tokens learning in the two stages
|
|
x = self.forward_tokens(x)
|
|
|
|
# step3: post network, apply class attention or not
|
|
if self.post_network is not None:
|
|
x = self.forward_cls(x)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
if self.global_pool == 'avg':
|
|
out = x.mean(dim=1)
|
|
elif self.global_pool == 'token':
|
|
out = x[:, 0]
|
|
else:
|
|
out = x
|
|
if pre_logits:
|
|
return out
|
|
out = self.head(out)
|
|
if self.aux_head is not None:
|
|
# generate classes in all feature tokens, see token labeling
|
|
aux = self.aux_head(x[:, 1:])
|
|
out = out + 0.5 * aux.max(1)[0]
|
|
return out
|
|
|
|
def forward(self, x):
|
|
""" simplified forward (without mix token training) """
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
|
|
def _create_volo(variant, pretrained=False, **kwargs):
|
|
if kwargs.get('features_only', None):
|
|
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
|
return build_model_with_cfg(VOLO, variant, pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def volo_d1_224(pretrained=False, **kwargs):
|
|
""" VOLO-D1 model, Params: 27M """
|
|
model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs)
|
|
model = _create_volo('volo_d1_224', pretrained=pretrained, **model_args)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def volo_d1_384(pretrained=False, **kwargs):
|
|
""" VOLO-D1 model, Params: 27M """
|
|
model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs)
|
|
model = _create_volo('volo_d1_384', pretrained=pretrained, **model_args)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def volo_d2_224(pretrained=False, **kwargs):
|
|
""" VOLO-D2 model, Params: 59M """
|
|
model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs)
|
|
model = _create_volo('volo_d2_224', pretrained=pretrained, **model_args)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def volo_d2_384(pretrained=False, **kwargs):
|
|
""" VOLO-D2 model, Params: 59M """
|
|
model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs)
|
|
model = _create_volo('volo_d2_384', pretrained=pretrained, **model_args)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def volo_d3_224(pretrained=False, **kwargs):
|
|
""" VOLO-D3 model, Params: 86M """
|
|
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs)
|
|
model = _create_volo('volo_d3_224', pretrained=pretrained, **model_args)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def volo_d3_448(pretrained=False, **kwargs):
|
|
""" VOLO-D3 model, Params: 86M """
|
|
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs)
|
|
model = _create_volo('volo_d3_448', pretrained=pretrained, **model_args)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def volo_d4_224(pretrained=False, **kwargs):
|
|
""" VOLO-D4 model, Params: 193M """
|
|
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs)
|
|
model = _create_volo('volo_d4_224', pretrained=pretrained, **model_args)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def volo_d4_448(pretrained=False, **kwargs):
|
|
""" VOLO-D4 model, Params: 193M """
|
|
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs)
|
|
model = _create_volo('volo_d4_448', pretrained=pretrained, **model_args)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def volo_d5_224(pretrained=False, **kwargs):
|
|
""" VOLO-D5 model, Params: 296M
|
|
stem_hidden_dim=128, the dim in patch embedding is 128 for VOLO-D5
|
|
"""
|
|
model_args = dict(
|
|
layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16),
|
|
mlp_ratio=4, stem_hidden_dim=128, **kwargs)
|
|
model = _create_volo('volo_d5_224', pretrained=pretrained, **model_args)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def volo_d5_448(pretrained=False, **kwargs):
|
|
""" VOLO-D5 model, Params: 296M
|
|
stem_hidden_dim=128, the dim in patch embedding is 128 for VOLO-D5
|
|
"""
|
|
model_args = dict(
|
|
layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16),
|
|
mlp_ratio=4, stem_hidden_dim=128, **kwargs)
|
|
model = _create_volo('volo_d5_448', pretrained=pretrained, **model_args)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def volo_d5_512(pretrained=False, **kwargs):
|
|
""" VOLO-D5 model, Params: 296M
|
|
stem_hidden_dim=128, the dim in patch embedding is 128 for VOLO-D5
|
|
"""
|
|
model_args = dict(
|
|
layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16),
|
|
mlp_ratio=4, stem_hidden_dim=128, **kwargs)
|
|
model = _create_volo('volo_d5_512', pretrained=pretrained, **model_args)
|
|
return model
|