106 lines
3.5 KiB
106 lines
3.5 KiB
"""
|
|
AdamP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/adamp.py
|
|
|
|
Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217
|
|
Code: https://github.com/clovaai/AdamP
|
|
|
|
Copyright (c) 2020-present NAVER Corp.
|
|
MIT license
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.optim.optimizer import Optimizer
|
|
import math
|
|
|
|
|
|
def _channel_view(x) -> torch.Tensor:
|
|
return x.reshape(x.size(0), -1)
|
|
|
|
|
|
def _layer_view(x) -> torch.Tensor:
|
|
return x.reshape(1, -1)
|
|
|
|
|
|
def projection(p, grad, perturb, delta: float, wd_ratio: float, eps: float):
|
|
wd = 1.
|
|
expand_size = (-1,) + (1,) * (len(p.shape) - 1)
|
|
for view_func in [_channel_view, _layer_view]:
|
|
param_view = view_func(p)
|
|
grad_view = view_func(grad)
|
|
cosine_sim = F.cosine_similarity(grad_view, param_view, dim=1, eps=eps).abs_()
|
|
|
|
# FIXME this is a problem for PyTorch XLA
|
|
if cosine_sim.max() < delta / math.sqrt(param_view.size(1)):
|
|
p_n = p / param_view.norm(p=2, dim=1).add_(eps).reshape(expand_size)
|
|
perturb -= p_n * view_func(p_n * perturb).sum(dim=1).reshape(expand_size)
|
|
wd = wd_ratio
|
|
return perturb, wd
|
|
|
|
return perturb, wd
|
|
|
|
|
|
class AdamP(Optimizer):
|
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
|
|
weight_decay=0, delta=0.1, wd_ratio=0.1, nesterov=False):
|
|
defaults = dict(
|
|
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
|
|
delta=delta, wd_ratio=wd_ratio, nesterov=nesterov)
|
|
super(AdamP, self).__init__(params, defaults)
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
|
|
grad = p.grad
|
|
beta1, beta2 = group['betas']
|
|
nesterov = group['nesterov']
|
|
|
|
state = self.state[p]
|
|
|
|
# State initialization
|
|
if len(state) == 0:
|
|
state['step'] = 0
|
|
state['exp_avg'] = torch.zeros_like(p)
|
|
state['exp_avg_sq'] = torch.zeros_like(p)
|
|
|
|
# Adam
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
|
|
|
state['step'] += 1
|
|
bias_correction1 = 1 - beta1 ** state['step']
|
|
bias_correction2 = 1 - beta2 ** state['step']
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
|
|
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
|
step_size = group['lr'] / bias_correction1
|
|
|
|
if nesterov:
|
|
perturb = (beta1 * exp_avg + (1 - beta1) * grad) / denom
|
|
else:
|
|
perturb = exp_avg / denom
|
|
|
|
# Projection
|
|
wd_ratio = 1.
|
|
if len(p.shape) > 1:
|
|
perturb, wd_ratio = projection(p, grad, perturb, group['delta'], group['wd_ratio'], group['eps'])
|
|
|
|
# Weight decay
|
|
if group['weight_decay'] > 0:
|
|
p.mul_(1. - group['lr'] * group['weight_decay'] * wd_ratio)
|
|
|
|
# Step
|
|
p.add_(perturb, alpha=-step_size)
|
|
|
|
return loss
|