You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
6.5 KiB
175 lines
6.5 KiB
""" Optimizer Factory w/ Custom Weight Decay
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
"""
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
|
|
from .adafactor import Adafactor
|
|
from .adahessian import Adahessian
|
|
from .adamp import AdamP
|
|
from .lookahead import Lookahead
|
|
from .nadam import Nadam
|
|
from .novograd import NovoGrad
|
|
from .nvnovograd import NvNovoGrad
|
|
from .radam import RAdam
|
|
from .rmsprop_tf import RMSpropTF
|
|
from .sgdp import SGDP
|
|
from .adabelief import AdaBelief
|
|
|
|
try:
|
|
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD
|
|
has_apex = True
|
|
except ImportError:
|
|
has_apex = False
|
|
|
|
|
|
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
|
|
decay = []
|
|
no_decay = []
|
|
for name, param in model.named_parameters():
|
|
if not param.requires_grad:
|
|
continue # frozen weights
|
|
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
|
|
no_decay.append(param)
|
|
else:
|
|
decay.append(param)
|
|
return [
|
|
{'params': no_decay, 'weight_decay': 0.},
|
|
{'params': decay, 'weight_decay': weight_decay}]
|
|
|
|
|
|
def optimizer_kwargs(cfg):
|
|
""" cfg/argparse to kwargs helper
|
|
Convert optimizer args in argparse args or cfg like object to keyword args for updated create fn.
|
|
"""
|
|
kwargs = dict(
|
|
optimizer_name=cfg.opt,
|
|
learning_rate=cfg.lr,
|
|
weight_decay=cfg.weight_decay,
|
|
momentum=cfg.momentum)
|
|
if getattr(cfg, 'opt_eps', None) is not None:
|
|
kwargs['eps'] = cfg.opt_eps
|
|
if getattr(cfg, 'opt_betas', None) is not None:
|
|
kwargs['betas'] = cfg.opt_betas
|
|
if getattr(cfg, 'opt_args', None) is not None:
|
|
kwargs.update(cfg.opt_args)
|
|
return kwargs
|
|
|
|
|
|
def create_optimizer(args, model, filter_bias_and_bn=True):
|
|
""" Legacy optimizer factory for backwards compatibility.
|
|
NOTE: Use create_optimizer_v2 for new code.
|
|
"""
|
|
return create_optimizer_v2(
|
|
model,
|
|
**optimizer_kwargs(cfg=args),
|
|
filter_bias_and_bn=filter_bias_and_bn,
|
|
)
|
|
|
|
|
|
def create_optimizer_v2(
|
|
model: nn.Module,
|
|
optimizer_name: str = 'sgd',
|
|
learning_rate: Optional[float] = None,
|
|
weight_decay: float = 0.,
|
|
momentum: float = 0.9,
|
|
filter_bias_and_bn: bool = True,
|
|
**kwargs):
|
|
""" Create an optimizer.
|
|
|
|
TODO currently the model is passed in and all parameters are selected for optimization.
|
|
For more general use an interface that allows selection of parameters to optimize and lr groups, one of:
|
|
* a filter fn interface that further breaks params into groups in a weight_decay compatible fashion
|
|
* expose the parameters interface and leave it up to caller
|
|
|
|
Args:
|
|
model (nn.Module): model containing parameters to optimize
|
|
optimizer_name: name of optimizer to create
|
|
learning_rate: initial learning rate
|
|
weight_decay: weight decay to apply in optimizer
|
|
momentum: momentum for momentum based optimizers (others may use betas via kwargs)
|
|
filter_bias_and_bn: filter out bias, bn and other 1d params from weight decay
|
|
**kwargs: extra optimizer specific kwargs to pass through
|
|
|
|
Returns:
|
|
Optimizer
|
|
"""
|
|
opt_lower = optimizer_name.lower()
|
|
if weight_decay and filter_bias_and_bn:
|
|
skip = {}
|
|
if hasattr(model, 'no_weight_decay'):
|
|
skip = model.no_weight_decay()
|
|
parameters = add_weight_decay(model, weight_decay, skip)
|
|
weight_decay = 0.
|
|
else:
|
|
parameters = model.parameters()
|
|
if 'fused' in opt_lower:
|
|
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers'
|
|
|
|
opt_args = dict(lr=learning_rate, weight_decay=weight_decay, **kwargs)
|
|
opt_split = opt_lower.split('_')
|
|
opt_lower = opt_split[-1]
|
|
if opt_lower == 'sgd' or opt_lower == 'nesterov':
|
|
opt_args.pop('eps', None)
|
|
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=True, **opt_args)
|
|
elif opt_lower == 'momentum':
|
|
opt_args.pop('eps', None)
|
|
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=False, **opt_args)
|
|
elif opt_lower == 'adam':
|
|
optimizer = optim.Adam(parameters, **opt_args)
|
|
elif opt_lower == 'adabelief':
|
|
optimizer = AdaBelief(parameters, rectify = False, print_change_log = False,**opt_args)
|
|
elif opt_lower == 'adamw':
|
|
optimizer = optim.AdamW(parameters, **opt_args)
|
|
elif opt_lower == 'nadam':
|
|
optimizer = Nadam(parameters, **opt_args)
|
|
elif opt_lower == 'radam':
|
|
optimizer = RAdam(parameters, **opt_args)
|
|
elif opt_lower == 'adamp':
|
|
optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args)
|
|
elif opt_lower == 'sgdp':
|
|
optimizer = SGDP(parameters, momentum=momentum, nesterov=True, **opt_args)
|
|
elif opt_lower == 'adadelta':
|
|
optimizer = optim.Adadelta(parameters, **opt_args)
|
|
elif opt_lower == 'adafactor':
|
|
if not learning_rate:
|
|
opt_args['lr'] = None
|
|
optimizer = Adafactor(parameters, **opt_args)
|
|
elif opt_lower == 'adahessian':
|
|
optimizer = Adahessian(parameters, **opt_args)
|
|
elif opt_lower == 'rmsprop':
|
|
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=momentum, **opt_args)
|
|
elif opt_lower == 'rmsproptf':
|
|
optimizer = RMSpropTF(parameters, alpha=0.9, momentum=momentum, **opt_args)
|
|
elif opt_lower == 'novograd':
|
|
optimizer = NovoGrad(parameters, **opt_args)
|
|
elif opt_lower == 'nvnovograd':
|
|
optimizer = NvNovoGrad(parameters, **opt_args)
|
|
elif opt_lower == 'fusedsgd':
|
|
opt_args.pop('eps', None)
|
|
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=True, **opt_args)
|
|
elif opt_lower == 'fusedmomentum':
|
|
opt_args.pop('eps', None)
|
|
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=False, **opt_args)
|
|
elif opt_lower == 'fusedadam':
|
|
optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args)
|
|
elif opt_lower == 'fusedadamw':
|
|
optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args)
|
|
elif opt_lower == 'fusedlamb':
|
|
optimizer = FusedLAMB(parameters, **opt_args)
|
|
elif opt_lower == 'fusednovograd':
|
|
opt_args.setdefault('betas', (0.95, 0.98))
|
|
optimizer = FusedNovoGrad(parameters, **opt_args)
|
|
else:
|
|
assert False and "Invalid optimizer"
|
|
raise ValueError
|
|
|
|
if len(opt_split) > 1:
|
|
if opt_split[0] == 'lookahead':
|
|
optimizer = Lookahead(optimizer)
|
|
|
|
return optimizer
|