You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/models/inception_v3.py

117 lines
4.9 KiB

from torchvision.models import Inception3
from models.helpers import load_pretrained
from data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
_models = ['inception_v3', 'tf_inception_v3', 'adv_inception_v3', 'gluon_inception_v3']
__all__ = _models
default_cfgs = {
# original PyTorch weights, ported from Tensorflow but modified
'inception_v3': {
'url': 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth',
'input_size': (3, 299, 299),
'crop_pct': 0.875,
'interpolation': 'bicubic',
'mean': IMAGENET_INCEPTION_MEAN, # also works well enough with resnet defaults
'std': IMAGENET_INCEPTION_STD, # also works well enough with resnet defaults
'num_classes': 1000,
'first_conv': 'conv0',
'classifier': 'fc'
},
# my port of Tensorflow SLIM weights (http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz)
'tf_inception_v3': {
'url': 'https://www.dropbox.com/s/xdh32bpdgqzpx8t/tf_inception_v3-e0069de4.pth?dl=1',
'input_size': (3, 299, 299),
'crop_pct': 0.875,
'interpolation': 'bicubic',
'mean': IMAGENET_INCEPTION_MEAN,
'std': IMAGENET_INCEPTION_STD,
'num_classes': 1001,
'first_conv': 'conv0',
'classifier': 'fc'
},
# my port of Tensorflow adversarially trained Inception V3 from
# http://download.tensorflow.org/models/adv_inception_v3_2017_08_18.tar.gz
'adv_inception_v3': {
'url': 'https://www.dropbox.com/s/b5pudqh84gtl7i8/adv_inception_v3-9e27bd63.pth?dl=1',
'input_size': (3, 299, 299),
'crop_pct': 0.875,
'interpolation': 'bicubic',
'mean': IMAGENET_INCEPTION_MEAN,
'std': IMAGENET_INCEPTION_STD,
'num_classes': 1001,
'first_conv': 'conv0',
'classifier': 'fc'
},
# from gluon pretrained models, best performing in terms of accuracy/loss metrics
# https://gluon-cv.mxnet.io/model_zoo/classification.html
'gluon_inception_v3': {
'url': 'https://www.dropbox.com/s/8uv6wrl6it6394u/gluon_inception_v3-9f746940.pth?dl=1',
'input_size': (3, 299, 299),
'crop_pct': 0.875,
'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, # also works well with inception defaults
'std': IMAGENET_DEFAULT_STD, # also works well with inception defaults
'num_classes': 1000,
'first_conv': 'conv0',
'classifier': 'fc'
}
}
def _assert_default_kwargs(kwargs):
# for imported models (ie torchvision) without capability to change these params,
# make sure they aren't being set to non-defaults
assert kwargs.pop('global_pool', 'avg') == 'avg'
assert kwargs.pop('drop_rate', 0.) == 0.
def inception_v3(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
# original PyTorch weights, ported from Tensorflow but modified
default_cfg = default_cfgs['inception_v3']
assert in_chans == 3
_assert_default_kwargs(kwargs)
model = Inception3(num_classes=num_classes, aux_logits=True, transform_input=False)
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
model.default_cfg = default_cfg
return model
def tf_inception_v3(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
# my port of Tensorflow SLIM weights (http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz)
default_cfg = default_cfgs['tf_inception_v3']
assert in_chans == 3
_assert_default_kwargs(kwargs)
model = Inception3(num_classes=num_classes, aux_logits=False, transform_input=False)
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
model.default_cfg = default_cfg
return model
def adv_inception_v3(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
# my port of Tensorflow adversarially trained Inception V3 from
# http://download.tensorflow.org/models/adv_inception_v3_2017_08_18.tar.gz
default_cfg = default_cfgs['adv_inception_v3']
assert in_chans == 3
_assert_default_kwargs(kwargs)
model = Inception3(num_classes=num_classes, aux_logits=False, transform_input=False)
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
model.default_cfg = default_cfg
return model
def gluon_inception_v3(num_classes=1000, in_chans=3, pretrained=False, **kwargs):
# from gluon pretrained models, best performing in terms of accuracy/loss metrics
# https://gluon-cv.mxnet.io/model_zoo/classification.html
default_cfg = default_cfgs['gluon_inception_v3']
assert in_chans == 3
_assert_default_kwargs(kwargs)
model = Inception3(num_classes=num_classes, aux_logits=False, transform_input=False)
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
model.default_cfg = default_cfg
return model