You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
5.9 KiB
171 lines
5.9 KiB
import torch
|
|
import torchvision.transforms.functional as F
|
|
from torchvision.transforms import InterpolationMode
|
|
|
|
import warnings
|
|
import math
|
|
import random
|
|
import numpy as np
|
|
|
|
|
|
class ToNumpy:
|
|
|
|
def __call__(self, pil_img):
|
|
np_img = np.array(pil_img, dtype=np.uint8)
|
|
if np_img.ndim < 3:
|
|
np_img = np.expand_dims(np_img, axis=-1)
|
|
np_img = np.rollaxis(np_img, 2) # HWC to CHW
|
|
return np_img
|
|
|
|
|
|
class ToTensor:
|
|
|
|
def __init__(self, dtype=torch.float32):
|
|
self.dtype = dtype
|
|
|
|
def __call__(self, pil_img):
|
|
np_img = np.array(pil_img, dtype=np.uint8)
|
|
if np_img.ndim < 3:
|
|
np_img = np.expand_dims(np_img, axis=-1)
|
|
np_img = np.rollaxis(np_img, 2) # HWC to CHW
|
|
return torch.from_numpy(np_img).to(dtype=self.dtype)
|
|
|
|
|
|
class ToTensorNormalize:
|
|
|
|
def __init__(self, mean, std, dtype=torch.float32, device=torch.device('cpu')):
|
|
self.dtype = dtype
|
|
mean = torch.as_tensor(mean, dtype=dtype, device=device)
|
|
std = torch.as_tensor(std, dtype=dtype, device=device)
|
|
if (std == 0).any():
|
|
raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
|
|
if mean.ndim == 1:
|
|
mean = mean.view(-1, 1, 1)
|
|
if std.ndim == 1:
|
|
std = std.view(-1, 1, 1)
|
|
self.mean = mean
|
|
self.std = std
|
|
|
|
def __call__(self, pil_img):
|
|
mode_to_nptype = {'I': np.int32, 'I;16': np.int16, 'F': np.float32}
|
|
img = torch.from_numpy(
|
|
np.array(pil_img, mode_to_nptype.get(pil_img.mode, np.uint8))
|
|
)
|
|
if pil_img.mode == '1':
|
|
img = 255 * img
|
|
img = img.view(pil_img.size[1], pil_img.size[0], len(pil_img.getbands()))
|
|
img = img.permute((2, 0, 1))
|
|
if isinstance(img, torch.ByteTensor):
|
|
img = img.to(self.dtype)
|
|
img.sub_(self.mean * 255.).div_(self.std * 255.)
|
|
else:
|
|
img = img.to(self.dtype)
|
|
img.sub_(self.mean).div_(self.std)
|
|
return img
|
|
|
|
|
|
_RANDOM_INTERPOLATION = (InterpolationMode.BILINEAR, InterpolationMode.BICUBIC)
|
|
|
|
|
|
class RandomResizedCropAndInterpolation:
|
|
"""Crop the given PIL Image to random size and aspect ratio with random interpolation.
|
|
|
|
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
|
|
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
|
|
is finally resized to given size.
|
|
This is popularly used to train the Inception networks.
|
|
|
|
Args:
|
|
size: expected output size of each edge
|
|
scale: range of size of the origin size cropped
|
|
ratio: range of aspect ratio of the origin aspect ratio cropped
|
|
interpolation: Default: PIL.Image.BILINEAR
|
|
"""
|
|
|
|
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.),
|
|
interpolation='bilinear'):
|
|
if isinstance(size, (list, tuple)):
|
|
self.size = tuple(size)
|
|
else:
|
|
self.size = (size, size)
|
|
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
|
|
warnings.warn("range should be of kind (min, max)")
|
|
|
|
if interpolation == 'random':
|
|
self.interpolation = _RANDOM_INTERPOLATION
|
|
else:
|
|
self.interpolation = InterpolationMode(interpolation)
|
|
self.scale = scale
|
|
self.ratio = ratio
|
|
|
|
@staticmethod
|
|
def get_params(img, scale, ratio):
|
|
"""Get parameters for ``crop`` for a random sized crop.
|
|
|
|
Args:
|
|
img (PIL Image): Image to be cropped.
|
|
scale (tuple): range of size of the origin size cropped
|
|
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
|
|
|
|
Returns:
|
|
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
|
|
sized crop.
|
|
"""
|
|
area = img.size[0] * img.size[1]
|
|
|
|
for attempt in range(10):
|
|
target_area = random.uniform(*scale) * area
|
|
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
|
|
aspect_ratio = math.exp(random.uniform(*log_ratio))
|
|
|
|
w = int(round(math.sqrt(target_area * aspect_ratio)))
|
|
h = int(round(math.sqrt(target_area / aspect_ratio)))
|
|
|
|
if w <= img.size[0] and h <= img.size[1]:
|
|
i = random.randint(0, img.size[1] - h)
|
|
j = random.randint(0, img.size[0] - w)
|
|
return i, j, h, w
|
|
|
|
# Fallback to central crop
|
|
in_ratio = img.size[0] / img.size[1]
|
|
if in_ratio < min(ratio):
|
|
w = img.size[0]
|
|
h = int(round(w / min(ratio)))
|
|
elif in_ratio > max(ratio):
|
|
h = img.size[1]
|
|
w = int(round(h * max(ratio)))
|
|
else: # whole image
|
|
w = img.size[0]
|
|
h = img.size[1]
|
|
i = (img.size[1] - h) // 2
|
|
j = (img.size[0] - w) // 2
|
|
return i, j, h, w
|
|
|
|
def __call__(self, img):
|
|
"""
|
|
Args:
|
|
img (PIL Image): Image to be cropped and resized.
|
|
|
|
Returns:
|
|
PIL Image: Randomly cropped and resized image.
|
|
"""
|
|
i, j, h, w = self.get_params(img, self.scale, self.ratio)
|
|
if isinstance(self.interpolation, (tuple, list)):
|
|
interpolation = random.choice(self.interpolation)
|
|
else:
|
|
interpolation = self.interpolation
|
|
return F.resized_crop(img, i, j, h, w, self.size, interpolation)
|
|
|
|
def __repr__(self):
|
|
if isinstance(self.interpolation, (tuple, list)):
|
|
interpolate_str = ' '.join([x.value for x in self.interpolation])
|
|
else:
|
|
interpolate_str = self.interpolation.value
|
|
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
|
|
format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
|
|
format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
|
|
format_string += ', interpolation={0})'.format(interpolate_str)
|
|
return format_string
|
|
|
|
|