You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
560 lines
20 KiB
560 lines
20 KiB
""" EdgeNeXt
|
|
|
|
Paper: `EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications`
|
|
- https://arxiv.org/abs/2206.10589
|
|
|
|
Original code and weights from https://github.com/mmaaz60/EdgeNeXt
|
|
|
|
Modifications and additions for timm by / Copyright 2022, Ross Wightman
|
|
"""
|
|
import math
|
|
import torch
|
|
from collections import OrderedDict
|
|
from functools import partial
|
|
from typing import Tuple
|
|
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
from .fx_features import register_notrace_module
|
|
from .layers import trunc_normal_tf_, DropPath, LayerNorm2d, Mlp, SelectAdaptivePool2d, create_conv2d
|
|
from .helpers import named_apply, build_model_with_cfg, checkpoint_seq
|
|
from .registry import register_model
|
|
|
|
|
|
__all__ = ['EdgeNeXt'] # model_registry will add each entrypoint fn to this
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url,
|
|
'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8),
|
|
'crop_pct': 0.9, 'interpolation': 'bicubic',
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'first_conv': 'stem.0', 'classifier': 'head.fc',
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = dict(
|
|
edgenext_xx_small=_cfg(
|
|
url="https://github.com/mmaaz60/EdgeNeXt/releases/download/v1.0/edgenext_xx_small.pth",
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
edgenext_x_small=_cfg(
|
|
url="https://github.com/mmaaz60/EdgeNeXt/releases/download/v1.0/edgenext_x_small.pth",
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
|
# edgenext_small=_cfg(
|
|
# url="https://github.com/mmaaz60/EdgeNeXt/releases/download/v1.0/edgenext_small.pth"),
|
|
edgenext_small=_cfg( # USI weights
|
|
url="https://github.com/mmaaz60/EdgeNeXt/releases/download/v1.1/edgenext_small_usi.pth",
|
|
crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0,
|
|
),
|
|
|
|
edgenext_small_rw=_cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/edgenext_small_rw-sw-b00041bb.pth',
|
|
test_input_size=(3, 320, 320), test_crop_pct=1.0,
|
|
),
|
|
)
|
|
|
|
|
|
@register_notrace_module # reason: FX can't symbolically trace torch.arange in forward method
|
|
class PositionalEncodingFourier(nn.Module):
|
|
def __init__(self, hidden_dim=32, dim=768, temperature=10000):
|
|
super().__init__()
|
|
self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1)
|
|
self.scale = 2 * math.pi
|
|
self.temperature = temperature
|
|
self.hidden_dim = hidden_dim
|
|
self.dim = dim
|
|
|
|
def forward(self, shape: Tuple[int, int, int]):
|
|
inv_mask = ~torch.zeros(shape).to(device=self.token_projection.weight.device, dtype=torch.bool)
|
|
y_embed = inv_mask.cumsum(1, dtype=torch.float32)
|
|
x_embed = inv_mask.cumsum(2, dtype=torch.float32)
|
|
eps = 1e-6
|
|
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
|
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
|
|
|
dim_t = torch.arange(self.hidden_dim, dtype=torch.float32, device=inv_mask.device)
|
|
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim)
|
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t
|
|
pos_y = y_embed[:, :, :, None] / dim_t
|
|
pos_x = torch.stack(
|
|
(pos_x[:, :, :, 0::2].sin(),
|
|
pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
|
pos_y = torch.stack(
|
|
(pos_y[:, :, :, 0::2].sin(),
|
|
pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
|
pos = self.token_projection(pos)
|
|
|
|
return pos
|
|
|
|
|
|
class ConvBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
dim_out=None,
|
|
kernel_size=7,
|
|
stride=1,
|
|
conv_bias=True,
|
|
expand_ratio=4,
|
|
ls_init_value=1e-6,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
act_layer=nn.GELU, drop_path=0.,
|
|
):
|
|
super().__init__()
|
|
dim_out = dim_out or dim
|
|
self.shortcut_after_dw = stride > 1 or dim != dim_out
|
|
|
|
self.conv_dw = create_conv2d(
|
|
dim, dim_out, kernel_size=kernel_size, stride=stride, depthwise=True, bias=conv_bias)
|
|
self.norm = norm_layer(dim_out)
|
|
self.mlp = Mlp(dim_out, int(expand_ratio * dim_out), act_layer=act_layer)
|
|
self.gamma = nn.Parameter(ls_init_value * torch.ones(dim_out)) if ls_init_value > 0 else None
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
shortcut = x
|
|
x = self.conv_dw(x)
|
|
if self.shortcut_after_dw:
|
|
shortcut = x
|
|
|
|
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
|
x = self.norm(x)
|
|
x = self.mlp(x)
|
|
if self.gamma is not None:
|
|
x = self.gamma * x
|
|
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
|
|
|
x = shortcut + self.drop_path(x)
|
|
return x
|
|
|
|
|
|
class CrossCovarianceAttn(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads=8,
|
|
qkv_bias=False,
|
|
attn_drop=0.,
|
|
proj_drop=0.
|
|
):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x):
|
|
B, N, C = x.shape
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 4, 1)
|
|
q, k, v = qkv.unbind(0)
|
|
|
|
# NOTE, this is NOT spatial attn, q, k, v are B, num_heads, C, L --> C x C attn map
|
|
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) * self.temperature
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C)
|
|
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {'temperature'}
|
|
|
|
|
|
class SplitTransposeBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_scales=1,
|
|
num_heads=8,
|
|
expand_ratio=4,
|
|
use_pos_emb=True,
|
|
conv_bias=True,
|
|
qkv_bias=True,
|
|
ls_init_value=1e-6,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
act_layer=nn.GELU,
|
|
drop_path=0.,
|
|
attn_drop=0.,
|
|
proj_drop=0.
|
|
):
|
|
super().__init__()
|
|
width = max(int(math.ceil(dim / num_scales)), int(math.floor(dim // num_scales)))
|
|
self.width = width
|
|
self.num_scales = max(1, num_scales - 1)
|
|
|
|
convs = []
|
|
for i in range(self.num_scales):
|
|
convs.append(create_conv2d(width, width, kernel_size=3, depthwise=True, bias=conv_bias))
|
|
self.convs = nn.ModuleList(convs)
|
|
|
|
self.pos_embd = None
|
|
if use_pos_emb:
|
|
self.pos_embd = PositionalEncodingFourier(dim=dim)
|
|
self.norm_xca = norm_layer(dim)
|
|
self.gamma_xca = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None
|
|
self.xca = CrossCovarianceAttn(
|
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop)
|
|
|
|
self.norm = norm_layer(dim, eps=1e-6)
|
|
self.mlp = Mlp(dim, int(expand_ratio * dim), act_layer=act_layer)
|
|
self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
shortcut = x
|
|
|
|
# scales code re-written for torchscript as per my res2net fixes -rw
|
|
spx = torch.split(x, self.width, 1)
|
|
spo = []
|
|
sp = spx[0]
|
|
for i, conv in enumerate(self.convs):
|
|
if i > 0:
|
|
sp = sp + spx[i]
|
|
sp = conv(sp)
|
|
spo.append(sp)
|
|
spo.append(spx[-1])
|
|
x = torch.cat(spo, 1)
|
|
|
|
# XCA
|
|
B, C, H, W = x.shape
|
|
x = x.reshape(B, C, H * W).permute(0, 2, 1)
|
|
if self.pos_embd is not None:
|
|
pos_encoding = self.pos_embd((B, H, W)).reshape(B, -1, x.shape[1]).permute(0, 2, 1)
|
|
x = x + pos_encoding
|
|
x = x + self.drop_path(self.gamma_xca * self.xca(self.norm_xca(x)))
|
|
x = x.reshape(B, H, W, C)
|
|
|
|
# Inverted Bottleneck
|
|
x = self.norm(x)
|
|
x = self.mlp(x)
|
|
if self.gamma is not None:
|
|
x = self.gamma * x
|
|
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
|
|
|
x = shortcut + self.drop_path(x)
|
|
return x
|
|
|
|
|
|
class EdgeNeXtStage(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_chs,
|
|
out_chs,
|
|
stride=2,
|
|
depth=2,
|
|
num_global_blocks=1,
|
|
num_heads=4,
|
|
scales=2,
|
|
kernel_size=7,
|
|
expand_ratio=4,
|
|
use_pos_emb=False,
|
|
downsample_block=False,
|
|
conv_bias=True,
|
|
ls_init_value=1.0,
|
|
drop_path_rates=None,
|
|
norm_layer=LayerNorm2d,
|
|
norm_layer_cl=partial(nn.LayerNorm, eps=1e-6),
|
|
act_layer=nn.GELU
|
|
):
|
|
super().__init__()
|
|
self.grad_checkpointing = False
|
|
|
|
if downsample_block or stride == 1:
|
|
self.downsample = nn.Identity()
|
|
else:
|
|
self.downsample = nn.Sequential(
|
|
norm_layer(in_chs),
|
|
nn.Conv2d(in_chs, out_chs, kernel_size=2, stride=2, bias=conv_bias)
|
|
)
|
|
in_chs = out_chs
|
|
|
|
stage_blocks = []
|
|
for i in range(depth):
|
|
if i < depth - num_global_blocks:
|
|
stage_blocks.append(
|
|
ConvBlock(
|
|
dim=in_chs,
|
|
dim_out=out_chs,
|
|
stride=stride if downsample_block and i == 0 else 1,
|
|
conv_bias=conv_bias,
|
|
kernel_size=kernel_size,
|
|
expand_ratio=expand_ratio,
|
|
ls_init_value=ls_init_value,
|
|
drop_path=drop_path_rates[i],
|
|
norm_layer=norm_layer_cl,
|
|
act_layer=act_layer,
|
|
)
|
|
)
|
|
else:
|
|
stage_blocks.append(
|
|
SplitTransposeBlock(
|
|
dim=in_chs,
|
|
num_scales=scales,
|
|
num_heads=num_heads,
|
|
expand_ratio=expand_ratio,
|
|
use_pos_emb=use_pos_emb,
|
|
conv_bias=conv_bias,
|
|
ls_init_value=ls_init_value,
|
|
drop_path=drop_path_rates[i],
|
|
norm_layer=norm_layer_cl,
|
|
act_layer=act_layer,
|
|
)
|
|
)
|
|
in_chs = out_chs
|
|
self.blocks = nn.Sequential(*stage_blocks)
|
|
|
|
def forward(self, x):
|
|
x = self.downsample(x)
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
x = checkpoint_seq(self.blocks, x)
|
|
else:
|
|
x = self.blocks(x)
|
|
return x
|
|
|
|
|
|
class EdgeNeXt(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_chans=3,
|
|
num_classes=1000,
|
|
global_pool='avg',
|
|
dims=(24, 48, 88, 168),
|
|
depths=(3, 3, 9, 3),
|
|
global_block_counts=(0, 1, 1, 1),
|
|
kernel_sizes=(3, 5, 7, 9),
|
|
heads=(8, 8, 8, 8),
|
|
d2_scales=(2, 2, 3, 4),
|
|
use_pos_emb=(False, True, False, False),
|
|
ls_init_value=1e-6,
|
|
head_init_scale=1.,
|
|
expand_ratio=4,
|
|
downsample_block=False,
|
|
conv_bias=True,
|
|
stem_type='patch',
|
|
head_norm_first=False,
|
|
act_layer=nn.GELU,
|
|
drop_path_rate=0.,
|
|
drop_rate=0.,
|
|
):
|
|
super().__init__()
|
|
self.num_classes = num_classes
|
|
self.global_pool = global_pool
|
|
self.drop_rate = drop_rate
|
|
norm_layer = partial(LayerNorm2d, eps=1e-6)
|
|
norm_layer_cl = partial(nn.LayerNorm, eps=1e-6)
|
|
self.feature_info = []
|
|
|
|
assert stem_type in ('patch', 'overlap')
|
|
if stem_type == 'patch':
|
|
self.stem = nn.Sequential(
|
|
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4, bias=conv_bias),
|
|
norm_layer(dims[0]),
|
|
)
|
|
else:
|
|
self.stem = nn.Sequential(
|
|
nn.Conv2d(in_chans, dims[0], kernel_size=9, stride=4, padding=9 // 2, bias=conv_bias),
|
|
norm_layer(dims[0]),
|
|
)
|
|
|
|
curr_stride = 4
|
|
stages = []
|
|
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
|
in_chs = dims[0]
|
|
for i in range(4):
|
|
stride = 2 if curr_stride == 2 or i > 0 else 1
|
|
# FIXME support dilation / output_stride
|
|
curr_stride *= stride
|
|
stages.append(EdgeNeXtStage(
|
|
in_chs=in_chs,
|
|
out_chs=dims[i],
|
|
stride=stride,
|
|
depth=depths[i],
|
|
num_global_blocks=global_block_counts[i],
|
|
num_heads=heads[i],
|
|
drop_path_rates=dp_rates[i],
|
|
scales=d2_scales[i],
|
|
expand_ratio=expand_ratio,
|
|
kernel_size=kernel_sizes[i],
|
|
use_pos_emb=use_pos_emb[i],
|
|
ls_init_value=ls_init_value,
|
|
downsample_block=downsample_block,
|
|
conv_bias=conv_bias,
|
|
norm_layer=norm_layer,
|
|
norm_layer_cl=norm_layer_cl,
|
|
act_layer=act_layer,
|
|
))
|
|
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
|
|
in_chs = dims[i]
|
|
self.feature_info += [dict(num_chs=in_chs, reduction=curr_stride, module=f'stages.{i}')]
|
|
|
|
self.stages = nn.Sequential(*stages)
|
|
|
|
self.num_features = dims[-1]
|
|
self.norm_pre = norm_layer(self.num_features) if head_norm_first else nn.Identity()
|
|
self.head = nn.Sequential(OrderedDict([
|
|
('global_pool', SelectAdaptivePool2d(pool_type=global_pool)),
|
|
('norm', nn.Identity() if head_norm_first else norm_layer(self.num_features)),
|
|
('flatten', nn.Flatten(1) if global_pool else nn.Identity()),
|
|
('drop', nn.Dropout(self.drop_rate)),
|
|
('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())]))
|
|
|
|
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)
|
|
|
|
@torch.jit.ignore
|
|
def group_matcher(self, coarse=False):
|
|
return dict(
|
|
stem=r'^stem',
|
|
blocks=r'^stages\.(\d+)' if coarse else [
|
|
(r'^stages\.(\d+)\.downsample', (0,)), # blocks
|
|
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
|
|
(r'^norm_pre', (99999,))
|
|
]
|
|
)
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
for s in self.stages:
|
|
s.grad_checkpointing = enable
|
|
|
|
@torch.jit.ignore
|
|
def get_classifier(self):
|
|
return self.head.fc
|
|
|
|
def reset_classifier(self, num_classes=0, global_pool=None):
|
|
if global_pool is not None:
|
|
self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity()
|
|
self.head.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
def forward_features(self, x):
|
|
x = self.stem(x)
|
|
x = self.stages(x)
|
|
x = self.norm_pre(x)
|
|
return x
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
# NOTE nn.Sequential in head broken down since can't call head[:-1](x) in torchscript :(
|
|
x = self.head.global_pool(x)
|
|
x = self.head.norm(x)
|
|
x = self.head.flatten(x)
|
|
x = self.head.drop(x)
|
|
return x if pre_logits else self.head.fc(x)
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
|
|
def _init_weights(module, name=None, head_init_scale=1.0):
|
|
if isinstance(module, nn.Conv2d):
|
|
trunc_normal_tf_(module.weight, std=.02)
|
|
if module.bias is not None:
|
|
nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Linear):
|
|
trunc_normal_tf_(module.weight, std=.02)
|
|
nn.init.zeros_(module.bias)
|
|
if name and 'head.' in name:
|
|
module.weight.data.mul_(head_init_scale)
|
|
module.bias.data.mul_(head_init_scale)
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model):
|
|
""" Remap FB checkpoints -> timm """
|
|
if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict:
|
|
return state_dict # non-FB checkpoint
|
|
|
|
# models were released as train checkpoints... :/
|
|
if 'model_ema' in state_dict:
|
|
state_dict = state_dict['model_ema']
|
|
elif 'model' in state_dict:
|
|
state_dict = state_dict['model']
|
|
elif 'state_dict' in state_dict:
|
|
state_dict = state_dict['state_dict']
|
|
|
|
out_dict = {}
|
|
import re
|
|
for k, v in state_dict.items():
|
|
k = k.replace('downsample_layers.0.', 'stem.')
|
|
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
|
|
k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k)
|
|
k = k.replace('dwconv', 'conv_dw')
|
|
k = k.replace('pwconv', 'mlp.fc')
|
|
k = k.replace('head.', 'head.fc.')
|
|
if k.startswith('norm.'):
|
|
k = k.replace('norm', 'head.norm')
|
|
if v.ndim == 2 and 'head' not in k:
|
|
model_shape = model.state_dict()[k].shape
|
|
v = v.reshape(model_shape)
|
|
out_dict[k] = v
|
|
return out_dict
|
|
|
|
|
|
def _create_edgenext(variant, pretrained=False, **kwargs):
|
|
model = build_model_with_cfg(
|
|
EdgeNeXt, variant, pretrained,
|
|
pretrained_filter_fn=checkpoint_filter_fn,
|
|
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
|
|
**kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def edgenext_xx_small(pretrained=False, **kwargs):
|
|
# 1.33M & 260.58M @ 256 resolution
|
|
# 71.23% Top-1 accuracy
|
|
# No AA, Color Jitter=0.4, No Mixup & Cutmix, DropPath=0.0, BS=4096, lr=0.006, multi-scale-sampler
|
|
# Jetson FPS=51.66 versus 47.67 for MobileViT_XXS
|
|
# For A100: FPS @ BS=1: 212.13 & @ BS=256: 7042.06 versus FPS @ BS=1: 96.68 & @ BS=256: 4624.71 for MobileViT_XXS
|
|
model_kwargs = dict(depths=(2, 2, 6, 2), dims=(24, 48, 88, 168), heads=(4, 4, 4, 4), **kwargs)
|
|
return _create_edgenext('edgenext_xx_small', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def edgenext_x_small(pretrained=False, **kwargs):
|
|
# 2.34M & 538.0M @ 256 resolution
|
|
# 75.00% Top-1 accuracy
|
|
# No AA, No Mixup & Cutmix, DropPath=0.0, BS=4096, lr=0.006, multi-scale-sampler
|
|
# Jetson FPS=31.61 versus 28.49 for MobileViT_XS
|
|
# For A100: FPS @ BS=1: 179.55 & @ BS=256: 4404.95 versus FPS @ BS=1: 94.55 & @ BS=256: 2361.53 for MobileViT_XS
|
|
model_kwargs = dict(depths=(3, 3, 9, 3), dims=(32, 64, 100, 192), heads=(4, 4, 4, 4), **kwargs)
|
|
return _create_edgenext('edgenext_x_small', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def edgenext_small(pretrained=False, **kwargs):
|
|
# 5.59M & 1260.59M @ 256 resolution
|
|
# 79.43% Top-1 accuracy
|
|
# AA=True, No Mixup & Cutmix, DropPath=0.1, BS=4096, lr=0.006, multi-scale-sampler
|
|
# Jetson FPS=20.47 versus 18.86 for MobileViT_S
|
|
# For A100: FPS @ BS=1: 172.33 & @ BS=256: 3010.25 versus FPS @ BS=1: 93.84 & @ BS=256: 1785.92 for MobileViT_S
|
|
model_kwargs = dict(depths=(3, 3, 9, 3), dims=(48, 96, 160, 304), **kwargs)
|
|
return _create_edgenext('edgenext_small', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def edgenext_small_rw(pretrained=False, **kwargs):
|
|
# 5.59M & 1260.59M @ 256 resolution
|
|
# 79.43% Top-1 accuracy
|
|
# AA=True, No Mixup & Cutmix, DropPath=0.1, BS=4096, lr=0.006, multi-scale-sampler
|
|
# Jetson FPS=20.47 versus 18.86 for MobileViT_S
|
|
# For A100: FPS @ BS=1: 172.33 & @ BS=256: 3010.25 versus FPS @ BS=1: 93.84 & @ BS=256: 1785.92 for MobileViT_S
|
|
model_kwargs = dict(
|
|
depths=(3, 3, 9, 3), dims=(48, 96, 192, 384),
|
|
downsample_block=True, conv_bias=False, stem_type='overlap', **kwargs)
|
|
return _create_edgenext('edgenext_small_rw', pretrained=pretrained, **model_kwargs)
|
|
|