You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/convert/convert_from_mxnet.py

108 lines
3.9 KiB

import argparse
import hashlib
import os
import mxnet as mx
import gluoncv
import torch
from models.model_factory import create_model
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--model', default='all', type=str, metavar='MODEL',
help='Name of model to train (default: "all"')
def convert(mxnet_name, torch_name):
# download and load the pre-trained model
net = gluoncv.model_zoo.get_model(mxnet_name, pretrained=True)
# create corresponding torch model
torch_net = create_model(torch_name)
mxp = [(k, v) for k, v in net.collect_params().items() if 'running' not in k]
torchp = list(torch_net.named_parameters())
torch_params = {}
# convert parameters
# NOTE: we are relying on the fact that the order of parameters
# are usually exactly the same between these models, thus no key name mapping
# is necessary. Asserts will trip if this is not the case.
for (tn, tv), (mn, mv) in zip(torchp, mxp):
m_split = mn.split('_')
t_split = tn.split('.')
print(t_split, m_split)
print(tv.shape, mv.shape)
# ensure ordering of BN params match since their sizes are not specific
if m_split[-1] == 'gamma':
assert t_split[-1] == 'weight'
if m_split[-1] == 'beta':
assert t_split[-1] == 'bias'
# ensure shapes match
assert all(t == m for t, m in zip(tv.shape, mv.shape))
torch_tensor = torch.from_numpy(mv.data().asnumpy())
torch_params[tn] = torch_tensor
# convert buffers (batch norm running stats)
mxb = [(k, v) for k, v in net.collect_params().items() if any(x in k for x in ['running_mean', 'running_var'])]
torchb = [(k, v) for k, v in torch_net.named_buffers() if 'num_batches' not in k]
for (tn, tv), (mn, mv) in zip(torchb, mxb):
print(tn, mn)
print(tv.shape, mv.shape)
# ensure ordering of BN params match since their sizes are not specific
if 'running_var' in tn:
assert 'running_var' in mn
if 'running_mean' in tn:
assert 'running_mean' in mn
torch_tensor = torch.from_numpy(mv.data().asnumpy())
torch_params[tn] = torch_tensor
torch_net.load_state_dict(torch_params)
torch_filename = './%s.pth' % torch_name
torch.save(torch_net.state_dict(), torch_filename)
with open(torch_filename, 'rb') as f:
sha_hash = hashlib.sha256(f.read()).hexdigest()
final_filename = os.path.splitext(torch_filename)[0] + '-' + sha_hash[:8] + '.pth'
os.rename(torch_filename, final_filename)
print("=> Saved converted model to '{}, SHA256: {}'".format(final_filename, sha_hash))
def map_mx_to_torch_model(mx_name):
torch_name = mx_name.lower()
if torch_name.startswith('se_'):
torch_name = torch_name.replace('se_', 'se')
elif torch_name.startswith('senet_'):
torch_name = torch_name.replace('senet_', 'senet')
elif torch_name.startswith('inceptionv3'):
torch_name = torch_name.replace('inceptionv3', 'inception_v3')
torch_name = 'gluon_' + torch_name
return torch_name
ALL = ['resnet18_v1b', 'resnet34_v1b', 'resnet50_v1b', 'resnet101_v1b', 'resnet152_v1b',
'resnet50_v1c', 'resnet101_v1c', 'resnet152_v1c', 'resnet50_v1d', 'resnet101_v1d', 'resnet152_v1d',
#'resnet50_v1e', 'resnet101_v1e', 'resnet152_v1e',
'resnet50_v1s', 'resnet101_v1s', 'resnet152_v1s', 'resnext50_32x4d', 'resnext101_32x4d', 'resnext101_64x4d',
'se_resnext50_32x4d', 'se_resnext101_32x4d', 'se_resnext101_64x4d', 'senet_154', 'inceptionv3']
def main():
args = parser.parse_args()
if not args.model or args.model == 'all':
for mx_model in ALL:
torch_model = map_mx_to_torch_model(mx_model)
convert(mx_model, torch_model)
else:
mx_model = args.model
torch_model = map_mx_to_torch_model(mx_model)
convert(mx_model, torch_model)
if __name__ == '__main__':
main()