You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
410 lines
17 KiB
410 lines
17 KiB
import dataclasses
|
|
import logging
|
|
import os
|
|
from copy import deepcopy
|
|
from typing import Optional, Dict, Callable, Any, Tuple
|
|
|
|
from torch import nn as nn
|
|
from torch.hub import load_state_dict_from_url
|
|
|
|
from timm.models._features import FeatureListNet, FeatureHookNet
|
|
from timm.models._features_fx import FeatureGraphNet
|
|
from timm.models._helpers import load_state_dict
|
|
from timm.models._hub import has_hf_hub, download_cached_file, check_cached_file, load_state_dict_from_hf
|
|
from timm.models._manipulate import adapt_input_conv
|
|
from timm.models._pretrained import PretrainedCfg
|
|
from timm.models._prune import adapt_model_from_file
|
|
from timm.models._registry import get_pretrained_cfg
|
|
|
|
_logger = logging.getLogger(__name__)
|
|
|
|
# Global variables for rarely used pretrained checkpoint download progress and hash check.
|
|
# Use set_pretrained_download_progress / set_pretrained_check_hash functions to toggle.
|
|
_DOWNLOAD_PROGRESS = False
|
|
_CHECK_HASH = False
|
|
|
|
|
|
__all__ = ['set_pretrained_download_progress', 'set_pretrained_check_hash', 'load_custom_pretrained', 'load_pretrained',
|
|
'pretrained_cfg_for_features', 'resolve_pretrained_cfg', 'build_model_with_cfg']
|
|
|
|
|
|
def _resolve_pretrained_source(pretrained_cfg):
|
|
cfg_source = pretrained_cfg.get('source', '')
|
|
pretrained_url = pretrained_cfg.get('url', None)
|
|
pretrained_file = pretrained_cfg.get('file', None)
|
|
hf_hub_id = pretrained_cfg.get('hf_hub_id', None)
|
|
|
|
# resolve where to load pretrained weights from
|
|
load_from = ''
|
|
pretrained_loc = ''
|
|
if cfg_source == 'hf-hub' and has_hf_hub(necessary=True):
|
|
# hf-hub specified as source via model identifier
|
|
load_from = 'hf-hub'
|
|
assert hf_hub_id
|
|
pretrained_loc = hf_hub_id
|
|
else:
|
|
# default source == timm or unspecified
|
|
if pretrained_file:
|
|
# file load override is the highest priority if set
|
|
load_from = 'file'
|
|
pretrained_loc = pretrained_file
|
|
else:
|
|
# next, HF hub is prioritized unless a valid cached version of weights exists already
|
|
cached_url_valid = check_cached_file(pretrained_url) if pretrained_url else False
|
|
if hf_hub_id and has_hf_hub(necessary=True) and not cached_url_valid:
|
|
# hf-hub available as alternate weight source in default_cfg
|
|
load_from = 'hf-hub'
|
|
pretrained_loc = hf_hub_id
|
|
elif pretrained_url:
|
|
load_from = 'url'
|
|
pretrained_loc = pretrained_url
|
|
|
|
if load_from == 'hf-hub' and pretrained_cfg.get('hf_hub_filename', None):
|
|
# if a filename override is set, return tuple for location w/ (hub_id, filename)
|
|
pretrained_loc = pretrained_loc, pretrained_cfg['hf_hub_filename']
|
|
return load_from, pretrained_loc
|
|
|
|
|
|
def set_pretrained_download_progress(enable=True):
|
|
""" Set download progress for pretrained weights on/off (globally). """
|
|
global _DOWNLOAD_PROGRESS
|
|
_DOWNLOAD_PROGRESS = enable
|
|
|
|
|
|
def set_pretrained_check_hash(enable=True):
|
|
""" Set hash checking for pretrained weights on/off (globally). """
|
|
global _CHECK_HASH
|
|
_CHECK_HASH = enable
|
|
|
|
|
|
def load_custom_pretrained(
|
|
model: nn.Module,
|
|
pretrained_cfg: Optional[Dict] = None,
|
|
load_fn: Optional[Callable] = None,
|
|
):
|
|
r"""Loads a custom (read non .pth) weight file
|
|
|
|
Downloads checkpoint file into cache-dir like torch.hub based loaders, but calls
|
|
a passed in custom load fun, or the `load_pretrained` model member fn.
|
|
|
|
If the object is already present in `model_dir`, it's deserialized and returned.
|
|
The default value of `model_dir` is ``<hub_dir>/checkpoints`` where
|
|
`hub_dir` is the directory returned by :func:`~torch.hub.get_dir`.
|
|
|
|
Args:
|
|
model: The instantiated model to load weights into
|
|
pretrained_cfg (dict): Default pretrained model cfg
|
|
load_fn: An external standalone fn that loads weights into provided model, otherwise a fn named
|
|
'laod_pretrained' on the model will be called if it exists
|
|
"""
|
|
pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None)
|
|
if not pretrained_cfg:
|
|
_logger.warning("Invalid pretrained config, cannot load weights.")
|
|
return
|
|
|
|
load_from, pretrained_loc = _resolve_pretrained_source(pretrained_cfg)
|
|
if not load_from:
|
|
_logger.warning("No pretrained weights exist for this model. Using random initialization.")
|
|
return
|
|
if load_from == 'hf-hub': # FIXME
|
|
_logger.warning("Hugging Face hub not currently supported for custom load pretrained models.")
|
|
elif load_from == 'url':
|
|
pretrained_loc = download_cached_file(
|
|
pretrained_loc,
|
|
check_hash=_CHECK_HASH,
|
|
progress=_DOWNLOAD_PROGRESS,
|
|
)
|
|
|
|
if load_fn is not None:
|
|
load_fn(model, pretrained_loc)
|
|
elif hasattr(model, 'load_pretrained'):
|
|
model.load_pretrained(pretrained_loc)
|
|
else:
|
|
_logger.warning("Valid function to load pretrained weights is not available, using random initialization.")
|
|
|
|
|
|
def load_pretrained(
|
|
model: nn.Module,
|
|
pretrained_cfg: Optional[Dict] = None,
|
|
num_classes: int = 1000,
|
|
in_chans: int = 3,
|
|
filter_fn: Optional[Callable] = None,
|
|
strict: bool = True,
|
|
):
|
|
""" Load pretrained checkpoint
|
|
|
|
Args:
|
|
model (nn.Module) : PyTorch model module
|
|
pretrained_cfg (Optional[Dict]): configuration for pretrained weights / target dataset
|
|
num_classes (int): num_classes for target model
|
|
in_chans (int): in_chans for target model
|
|
filter_fn (Optional[Callable]): state_dict filter fn for load (takes state_dict, model as args)
|
|
strict (bool): strict load of checkpoint
|
|
|
|
"""
|
|
pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None)
|
|
if not pretrained_cfg:
|
|
_logger.warning("Invalid pretrained config, cannot load weights.")
|
|
return
|
|
|
|
load_from, pretrained_loc = _resolve_pretrained_source(pretrained_cfg)
|
|
if load_from == 'file':
|
|
_logger.info(f'Loading pretrained weights from file ({pretrained_loc})')
|
|
state_dict = load_state_dict(pretrained_loc)
|
|
elif load_from == 'url':
|
|
_logger.info(f'Loading pretrained weights from url ({pretrained_loc})')
|
|
if pretrained_cfg.get('custom_load', False):
|
|
pretrained_loc = download_cached_file(
|
|
pretrained_loc,
|
|
progress=_DOWNLOAD_PROGRESS,
|
|
check_hash=_CHECK_HASH,
|
|
)
|
|
model.load_pretrained(pretrained_loc)
|
|
return
|
|
else:
|
|
state_dict = load_state_dict_from_url(
|
|
pretrained_loc,
|
|
map_location='cpu',
|
|
progress=_DOWNLOAD_PROGRESS,
|
|
check_hash=_CHECK_HASH,
|
|
)
|
|
elif load_from == 'hf-hub':
|
|
_logger.info(f'Loading pretrained weights from Hugging Face hub ({pretrained_loc})')
|
|
if isinstance(pretrained_loc, (list, tuple)):
|
|
state_dict = load_state_dict_from_hf(*pretrained_loc)
|
|
else:
|
|
state_dict = load_state_dict_from_hf(pretrained_loc)
|
|
else:
|
|
_logger.warning("No pretrained weights exist or were found for this model. Using random initialization.")
|
|
return
|
|
|
|
if filter_fn is not None:
|
|
# for backwards compat with filter fn that take one arg, try one first, the two
|
|
try:
|
|
state_dict = filter_fn(state_dict)
|
|
except TypeError:
|
|
state_dict = filter_fn(state_dict, model)
|
|
|
|
input_convs = pretrained_cfg.get('first_conv', None)
|
|
if input_convs is not None and in_chans != 3:
|
|
if isinstance(input_convs, str):
|
|
input_convs = (input_convs,)
|
|
for input_conv_name in input_convs:
|
|
weight_name = input_conv_name + '.weight'
|
|
try:
|
|
state_dict[weight_name] = adapt_input_conv(in_chans, state_dict[weight_name])
|
|
_logger.info(
|
|
f'Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)')
|
|
except NotImplementedError as e:
|
|
del state_dict[weight_name]
|
|
strict = False
|
|
_logger.warning(
|
|
f'Unable to convert pretrained {input_conv_name} weights, using random init for this layer.')
|
|
|
|
classifiers = pretrained_cfg.get('classifier', None)
|
|
label_offset = pretrained_cfg.get('label_offset', 0)
|
|
if classifiers is not None:
|
|
if isinstance(classifiers, str):
|
|
classifiers = (classifiers,)
|
|
if num_classes != pretrained_cfg['num_classes']:
|
|
for classifier_name in classifiers:
|
|
# completely discard fully connected if model num_classes doesn't match pretrained weights
|
|
state_dict.pop(classifier_name + '.weight', None)
|
|
state_dict.pop(classifier_name + '.bias', None)
|
|
strict = False
|
|
elif label_offset > 0:
|
|
for classifier_name in classifiers:
|
|
# special case for pretrained weights with an extra background class in pretrained weights
|
|
classifier_weight = state_dict[classifier_name + '.weight']
|
|
state_dict[classifier_name + '.weight'] = classifier_weight[label_offset:]
|
|
classifier_bias = state_dict[classifier_name + '.bias']
|
|
state_dict[classifier_name + '.bias'] = classifier_bias[label_offset:]
|
|
|
|
model.load_state_dict(state_dict, strict=strict)
|
|
|
|
|
|
def pretrained_cfg_for_features(pretrained_cfg):
|
|
pretrained_cfg = deepcopy(pretrained_cfg)
|
|
# remove default pretrained cfg fields that don't have much relevance for feature backbone
|
|
to_remove = ('num_classes', 'classifier', 'global_pool') # add default final pool size?
|
|
for tr in to_remove:
|
|
pretrained_cfg.pop(tr, None)
|
|
return pretrained_cfg
|
|
|
|
|
|
def _filter_kwargs(kwargs, names):
|
|
if not kwargs or not names:
|
|
return
|
|
for n in names:
|
|
kwargs.pop(n, None)
|
|
|
|
|
|
def _update_default_kwargs(pretrained_cfg, kwargs, kwargs_filter):
|
|
""" Update the default_cfg and kwargs before passing to model
|
|
|
|
Args:
|
|
pretrained_cfg: input pretrained cfg (updated in-place)
|
|
kwargs: keyword args passed to model build fn (updated in-place)
|
|
kwargs_filter: keyword arg keys that must be removed before model __init__
|
|
"""
|
|
# Set model __init__ args that can be determined by default_cfg (if not already passed as kwargs)
|
|
default_kwarg_names = ('num_classes', 'global_pool', 'in_chans')
|
|
if pretrained_cfg.get('fixed_input_size', False):
|
|
# if fixed_input_size exists and is True, model takes an img_size arg that fixes its input size
|
|
default_kwarg_names += ('img_size',)
|
|
|
|
for n in default_kwarg_names:
|
|
# for legacy reasons, model __init__args uses img_size + in_chans as separate args while
|
|
# pretrained_cfg has one input_size=(C, H ,W) entry
|
|
if n == 'img_size':
|
|
input_size = pretrained_cfg.get('input_size', None)
|
|
if input_size is not None:
|
|
assert len(input_size) == 3
|
|
kwargs.setdefault(n, input_size[-2:])
|
|
elif n == 'in_chans':
|
|
input_size = pretrained_cfg.get('input_size', None)
|
|
if input_size is not None:
|
|
assert len(input_size) == 3
|
|
kwargs.setdefault(n, input_size[0])
|
|
else:
|
|
default_val = pretrained_cfg.get(n, None)
|
|
if default_val is not None:
|
|
kwargs.setdefault(n, pretrained_cfg[n])
|
|
|
|
# Filter keyword args for task specific model variants (some 'features only' models, etc.)
|
|
_filter_kwargs(kwargs, names=kwargs_filter)
|
|
|
|
|
|
def resolve_pretrained_cfg(
|
|
variant: str,
|
|
pretrained_cfg=None,
|
|
pretrained_cfg_overlay=None,
|
|
) -> PretrainedCfg:
|
|
model_with_tag = variant
|
|
pretrained_tag = None
|
|
if pretrained_cfg:
|
|
if isinstance(pretrained_cfg, dict):
|
|
# pretrained_cfg dict passed as arg, validate by converting to PretrainedCfg
|
|
pretrained_cfg = PretrainedCfg(**pretrained_cfg)
|
|
elif isinstance(pretrained_cfg, str):
|
|
pretrained_tag = pretrained_cfg
|
|
pretrained_cfg = None
|
|
|
|
# fallback to looking up pretrained cfg in model registry by variant identifier
|
|
if not pretrained_cfg:
|
|
if pretrained_tag:
|
|
model_with_tag = '.'.join([variant, pretrained_tag])
|
|
pretrained_cfg = get_pretrained_cfg(model_with_tag)
|
|
|
|
if not pretrained_cfg:
|
|
_logger.warning(
|
|
f"No pretrained configuration specified for {model_with_tag} model. Using a default."
|
|
f" Please add a config to the model pretrained_cfg registry or pass explicitly.")
|
|
pretrained_cfg = PretrainedCfg() # instance with defaults
|
|
|
|
pretrained_cfg_overlay = pretrained_cfg_overlay or {}
|
|
if not pretrained_cfg.architecture:
|
|
pretrained_cfg_overlay.setdefault('architecture', variant)
|
|
pretrained_cfg = dataclasses.replace(pretrained_cfg, **pretrained_cfg_overlay)
|
|
|
|
return pretrained_cfg
|
|
|
|
|
|
def build_model_with_cfg(
|
|
model_cls: Callable,
|
|
variant: str,
|
|
pretrained: bool,
|
|
pretrained_cfg: Optional[Dict] = None,
|
|
pretrained_cfg_overlay: Optional[Dict] = None,
|
|
model_cfg: Optional[Any] = None,
|
|
feature_cfg: Optional[Dict] = None,
|
|
pretrained_strict: bool = True,
|
|
pretrained_filter_fn: Optional[Callable] = None,
|
|
kwargs_filter: Optional[Tuple[str]] = None,
|
|
**kwargs,
|
|
):
|
|
""" Build model with specified default_cfg and optional model_cfg
|
|
|
|
This helper fn aids in the construction of a model including:
|
|
* handling default_cfg and associated pretrained weight loading
|
|
* passing through optional model_cfg for models with config based arch spec
|
|
* features_only model adaptation
|
|
* pruning config / model adaptation
|
|
|
|
Args:
|
|
model_cls (nn.Module): model class
|
|
variant (str): model variant name
|
|
pretrained (bool): load pretrained weights
|
|
pretrained_cfg (dict): model's pretrained weight/task config
|
|
model_cfg (Optional[Dict]): model's architecture config
|
|
feature_cfg (Optional[Dict]: feature extraction adapter config
|
|
pretrained_strict (bool): load pretrained weights strictly
|
|
pretrained_filter_fn (Optional[Callable]): filter callable for pretrained weights
|
|
kwargs_filter (Optional[Tuple]): kwargs to filter before passing to model
|
|
**kwargs: model args passed through to model __init__
|
|
"""
|
|
pruned = kwargs.pop('pruned', False)
|
|
features = False
|
|
feature_cfg = feature_cfg or {}
|
|
|
|
# resolve and update model pretrained config and model kwargs
|
|
pretrained_cfg = resolve_pretrained_cfg(
|
|
variant,
|
|
pretrained_cfg=pretrained_cfg,
|
|
pretrained_cfg_overlay=pretrained_cfg_overlay
|
|
)
|
|
|
|
# FIXME converting back to dict, PretrainedCfg use should be propagated further, but not into model
|
|
pretrained_cfg = pretrained_cfg.to_dict()
|
|
|
|
_update_default_kwargs(pretrained_cfg, kwargs, kwargs_filter)
|
|
|
|
# Setup for feature extraction wrapper done at end of this fn
|
|
if kwargs.pop('features_only', False):
|
|
features = True
|
|
feature_cfg.setdefault('out_indices', (0, 1, 2, 3, 4))
|
|
if 'out_indices' in kwargs:
|
|
feature_cfg['out_indices'] = kwargs.pop('out_indices')
|
|
|
|
# Instantiate the model
|
|
if model_cfg is None:
|
|
model = model_cls(**kwargs)
|
|
else:
|
|
model = model_cls(cfg=model_cfg, **kwargs)
|
|
model.pretrained_cfg = pretrained_cfg
|
|
model.default_cfg = model.pretrained_cfg # alias for backwards compat
|
|
|
|
if pruned:
|
|
model = adapt_model_from_file(model, variant)
|
|
|
|
# For classification models, check class attr, then kwargs, then default to 1k, otherwise 0 for feats
|
|
num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000))
|
|
if pretrained:
|
|
load_pretrained(
|
|
model,
|
|
pretrained_cfg=pretrained_cfg,
|
|
num_classes=num_classes_pretrained,
|
|
in_chans=kwargs.get('in_chans', 3),
|
|
filter_fn=pretrained_filter_fn,
|
|
strict=pretrained_strict,
|
|
)
|
|
|
|
# Wrap the model in a feature extraction module if enabled
|
|
if features:
|
|
feature_cls = FeatureListNet
|
|
if 'feature_cls' in feature_cfg:
|
|
feature_cls = feature_cfg.pop('feature_cls')
|
|
if isinstance(feature_cls, str):
|
|
feature_cls = feature_cls.lower()
|
|
if 'hook' in feature_cls:
|
|
feature_cls = FeatureHookNet
|
|
elif feature_cls == 'fx':
|
|
feature_cls = FeatureGraphNet
|
|
else:
|
|
assert False, f'Unknown feature class {feature_cls}'
|
|
model = feature_cls(model, **feature_cfg)
|
|
model.pretrained_cfg = pretrained_cfg_for_features(pretrained_cfg) # add back default_cfg
|
|
model.default_cfg = model.pretrained_cfg # alias for backwards compat
|
|
|
|
return model
|