You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
7.6 KiB
197 lines
7.6 KiB
import torch
|
|
import torch.nn as nn
|
|
from copy import deepcopy
|
|
import torch.utils.model_zoo as model_zoo
|
|
import os
|
|
import logging
|
|
from collections import OrderedDict
|
|
from timm.models.layers.conv2d_same import Conv2dSame
|
|
|
|
|
|
def load_state_dict(checkpoint_path, use_ema=False):
|
|
if checkpoint_path and os.path.isfile(checkpoint_path):
|
|
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
|
state_dict_key = 'state_dict'
|
|
if isinstance(checkpoint, dict):
|
|
if use_ema and 'state_dict_ema' in checkpoint:
|
|
state_dict_key = 'state_dict_ema'
|
|
if state_dict_key and state_dict_key in checkpoint:
|
|
new_state_dict = OrderedDict()
|
|
for k, v in checkpoint[state_dict_key].items():
|
|
# strip `module.` prefix
|
|
name = k[7:] if k.startswith('module') else k
|
|
new_state_dict[name] = v
|
|
state_dict = new_state_dict
|
|
else:
|
|
state_dict = checkpoint
|
|
logging.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path))
|
|
return state_dict
|
|
else:
|
|
logging.error("No checkpoint found at '{}'".format(checkpoint_path))
|
|
raise FileNotFoundError()
|
|
|
|
|
|
def load_checkpoint(model, checkpoint_path, use_ema=False, strict=True):
|
|
state_dict = load_state_dict(checkpoint_path, use_ema)
|
|
model.load_state_dict(state_dict, strict=strict)
|
|
|
|
|
|
def resume_checkpoint(model, checkpoint_path):
|
|
other_state = {}
|
|
resume_epoch = None
|
|
if os.path.isfile(checkpoint_path):
|
|
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
|
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
|
new_state_dict = OrderedDict()
|
|
for k, v in checkpoint['state_dict'].items():
|
|
name = k[7:] if k.startswith('module') else k
|
|
new_state_dict[name] = v
|
|
model.load_state_dict(new_state_dict)
|
|
if 'optimizer' in checkpoint:
|
|
other_state['optimizer'] = checkpoint['optimizer']
|
|
if 'amp' in checkpoint:
|
|
other_state['amp'] = checkpoint['amp']
|
|
if 'epoch' in checkpoint:
|
|
resume_epoch = checkpoint['epoch']
|
|
if 'version' in checkpoint and checkpoint['version'] > 1:
|
|
resume_epoch += 1 # start at the next epoch, old checkpoints incremented before save
|
|
logging.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch']))
|
|
else:
|
|
model.load_state_dict(checkpoint)
|
|
logging.info("Loaded checkpoint '{}'".format(checkpoint_path))
|
|
return other_state, resume_epoch
|
|
else:
|
|
logging.error("No checkpoint found at '{}'".format(checkpoint_path))
|
|
raise FileNotFoundError()
|
|
|
|
|
|
def load_pretrained(model, cfg=None, num_classes=1000, in_chans=3, filter_fn=None, strict=True):
|
|
if cfg is None:
|
|
cfg = getattr(model, 'default_cfg')
|
|
if cfg is None or 'url' not in cfg or not cfg['url']:
|
|
logging.warning("Pretrained model URL is invalid, using random initialization.")
|
|
return
|
|
|
|
state_dict = model_zoo.load_url(cfg['url'], progress=False, map_location='cpu')
|
|
|
|
if filter_fn is not None:
|
|
state_dict = filter_fn(state_dict)
|
|
|
|
if in_chans == 1:
|
|
conv1_name = cfg['first_conv']
|
|
logging.info('Converting first conv (%s) from 3 to 1 channel' % conv1_name)
|
|
conv1_weight = state_dict[conv1_name + '.weight']
|
|
state_dict[conv1_name + '.weight'] = conv1_weight.sum(dim=1, keepdim=True)
|
|
elif in_chans != 3:
|
|
assert False, "Invalid in_chans for pretrained weights"
|
|
|
|
classifier_name = cfg['classifier']
|
|
if num_classes == 1000 and cfg['num_classes'] == 1001:
|
|
# special case for imagenet trained models with extra background class in pretrained weights
|
|
classifier_weight = state_dict[classifier_name + '.weight']
|
|
state_dict[classifier_name + '.weight'] = classifier_weight[1:]
|
|
classifier_bias = state_dict[classifier_name + '.bias']
|
|
state_dict[classifier_name + '.bias'] = classifier_bias[1:]
|
|
elif num_classes != cfg['num_classes']:
|
|
# completely discard fully connected for all other differences between pretrained and created model
|
|
del state_dict[classifier_name + '.weight']
|
|
del state_dict[classifier_name + '.bias']
|
|
strict = False
|
|
|
|
model.load_state_dict(state_dict, strict=strict)
|
|
|
|
|
|
def extract_layer(model, layer):
|
|
layer = layer.split('.')
|
|
module = model
|
|
if hasattr(model, 'module') and layer[0] != 'module':
|
|
module = model.module
|
|
if not hasattr(model, 'module') and layer[0] == 'module':
|
|
layer = layer[1:]
|
|
for l in layer:
|
|
if hasattr(module, l):
|
|
if not l.isdigit():
|
|
module = getattr(module, l)
|
|
else:
|
|
module = module[int(l)]
|
|
else:
|
|
return module
|
|
return module
|
|
|
|
|
|
def set_layer(model, layer, val):
|
|
layer = layer.split('.')
|
|
module = model
|
|
if hasattr(model, 'module') and layer[0] != 'module':
|
|
module = model.module
|
|
lst_index = 0
|
|
module2 = module
|
|
for l in layer:
|
|
if hasattr(module2, l):
|
|
if not l.isdigit():
|
|
module2 = getattr(module2, l)
|
|
else:
|
|
module2 = module2[int(l)]
|
|
lst_index += 1
|
|
lst_index -= 1
|
|
for l in layer[:lst_index]:
|
|
if not l.isdigit():
|
|
module = getattr(module, l)
|
|
else:
|
|
module = module[int(l)]
|
|
l = layer[lst_index]
|
|
setattr(module, l, val)
|
|
|
|
|
|
def adapt_model_from_string(parent_module, model_string):
|
|
separator = '***'
|
|
state_dict = {}
|
|
lst_shape = model_string.split(separator)
|
|
for k in lst_shape:
|
|
k = k.split(':')
|
|
key = k[0]
|
|
shape = k[1][1:-1].split(',')
|
|
if shape[0] != '':
|
|
state_dict[key] = [int(i) for i in shape]
|
|
|
|
new_module = deepcopy(parent_module)
|
|
for n, m in parent_module.named_modules():
|
|
old_module = extract_layer(parent_module, n)
|
|
if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame):
|
|
if isinstance(old_module, Conv2dSame):
|
|
conv = Conv2dSame
|
|
else:
|
|
conv = nn.Conv2d
|
|
s = state_dict[n + '.weight']
|
|
in_channels = s[1]
|
|
out_channels = s[0]
|
|
g = 1
|
|
if old_module.groups > 1:
|
|
in_channels = out_channels
|
|
g = in_channels
|
|
new_conv = conv(
|
|
in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size,
|
|
bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation,
|
|
groups=g, stride=old_module.stride)
|
|
set_layer(new_module, n, new_conv)
|
|
if isinstance(old_module, nn.BatchNorm2d):
|
|
new_bn = nn.BatchNorm2d(
|
|
num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum,
|
|
affine=old_module.affine, track_running_stats=True)
|
|
set_layer(new_module, n, new_bn)
|
|
if isinstance(old_module, nn.Linear):
|
|
new_fc = nn.Linear(
|
|
in_features=state_dict[n + '.weight'][1], out_features=old_module.out_features,
|
|
bias=old_module.bias is not None)
|
|
set_layer(new_module, n, new_fc)
|
|
new_module.eval()
|
|
parent_module.eval()
|
|
|
|
return new_module
|
|
|
|
|
|
def adapt_model_from_file(parent_module, model_variant):
|
|
adapt_file = os.path.join(os.path.dirname(__file__), 'pruned', model_variant + '.txt')
|
|
with open(adapt_file, 'r') as f:
|
|
return adapt_model_from_string(parent_module, f.read().strip())
|