You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/models/layers/gnn_layers.py

279 lines
10 KiB

# Layers for GNN model
# Reference: https://github.com/lightaime/deep_gcns_torch
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from timm.models.fx_features import register_notrace_module
from .drop import DropPath
from .pos_embed import build_sincos2d_pos_embed
def pairwise_distance(x, y):
"""
Compute pairwise distance of a point cloud
"""
with torch.no_grad():
xy_inner = -2*torch.matmul(x, y.transpose(2, 1))
x_square = torch.sum(torch.mul(x, x), dim=-1, keepdim=True)
y_square = torch.sum(torch.mul(y, y), dim=-1, keepdim=True)
return x_square + xy_inner + y_square.transpose(2, 1)
def dense_knn_matrix(x, y, k=16, relative_pos=None):
"""Get KNN based on the pairwise distance
"""
with torch.no_grad():
x = x.transpose(2, 1).squeeze(-1)
y = y.transpose(2, 1).squeeze(-1)
batch_size, n_points, n_dims = x.shape
dist = pairwise_distance(x.detach(), y.detach())
if relative_pos is not None:
dist += relative_pos
_, nn_idx = torch.topk(-dist, k=k)
center_idx = torch.arange(0, n_points, device=x.device).repeat(batch_size, k, 1).transpose(2, 1)
return torch.stack((nn_idx, center_idx), dim=0)
class DenseDilated(nn.Module):
"""
Find dilated neighbor from neighbor list
"""
def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0):
super(DenseDilated, self).__init__()
self.dilation = dilation
self.stochastic = stochastic
self.epsilon = epsilon
self.k = k
def forward(self, edge_index):
if self.stochastic:
if torch.rand(1) < self.epsilon and self.training:
num = self.k * self.dilation
randnum = torch.randperm(num)[:self.k]
edge_index = edge_index[:, :, :, randnum]
else:
edge_index = edge_index[:, :, :, ::self.dilation]
else:
edge_index = edge_index[:, :, :, ::self.dilation]
return edge_index
class DenseDilatedKnnGraph(nn.Module):
"""
Find the neighbors' indices based on dilated knn
"""
def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0):
super(DenseDilatedKnnGraph, self).__init__()
self.dilation = dilation
self.k = k
self._dilated = DenseDilated(k, dilation, stochastic, epsilon)
def forward(self, x, y=None, relative_pos=None):
x = F.normalize(x, p=2.0, dim=1)
if y is not None:
y = F.normalize(y, p=2.0, dim=1)
edge_index = dense_knn_matrix(x, y, self.k * self.dilation, relative_pos)
else:
edge_index = dense_knn_matrix(x, x, self.k * self.dilation, relative_pos)
return self._dilated(edge_index)
def batched_index_select(x, idx):
# fetches neighbors features from a given neighbor idx
batch_size, num_dims, num_vertices_reduced = x.shape[:3]
_, num_vertices, k = idx.shape
idx_base = torch.arange(0, batch_size, device=idx.device).view(-1, 1, 1) * num_vertices_reduced
idx = idx + idx_base
idx = idx.contiguous().view(-1)
x = x.transpose(2, 1)
feature = x.contiguous().view(batch_size * num_vertices_reduced, -1)[idx, :]
feature = feature.view(batch_size, num_vertices, k, num_dims).permute(0, 3, 1, 2).contiguous()
return feature
def norm_layer(norm, nc):
# normalization layer 2d
norm = norm.lower()
if norm == 'batch':
layer = nn.BatchNorm2d(nc, affine=True)
elif norm == 'instance':
layer = nn.InstanceNorm2d(nc, affine=False)
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm)
return layer
class MRConv2d(nn.Module):
"""
Max-Relative Graph Convolution (Paper: https://arxiv.org/abs/1904.03751) for dense data type
"""
def __init__(self, in_channels, out_channels, act_layer=nn.GELU, norm=None, bias=True):
super(MRConv2d, self).__init__()
# self.nn = BasicConv([in_channels*2, out_channels], act_layer, norm, bias)
self.nn = nn.Sequential(
nn.Conv2d(in_channels*2, out_channels, 1, bias=bias, groups=4),
norm_layer(norm, out_channels),
act_layer(),
)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x, edge_index, y=None):
x_i = batched_index_select(x, edge_index[1])
if y is not None:
x_j = batched_index_select(y, edge_index[0])
else:
x_j = batched_index_select(x, edge_index[0])
x_j, _ = torch.max(x_j - x_i, -1, keepdim=True)
b, c, n, _ = x.shape
x = torch.cat([x.unsqueeze(2), x_j.unsqueeze(2)], dim=2).reshape(b, 2 * c, n, _)
return self.nn(x)
class EdgeConv2d(nn.Module):
"""
Edge convolution layer (with activation, batch normalization) for dense data type
"""
def __init__(self, in_channels, out_channels, act_layer=nn.GELU, norm=None, bias=True):
super(EdgeConv2d, self).__init__()
self.nn = nn.Sequential(
nn.Conv2d(in_channels*2, out_channels, 1, bias=bias, groups=4),
norm_layer(norm, out_channels),
act_layer(),
)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x, edge_index, y=None):
x_i = batched_index_select(x, edge_index[1])
if y is not None:
x_j = batched_index_select(y, edge_index[0])
else:
x_j = batched_index_select(x, edge_index[0])
max_value, _ = torch.max(self.nn(torch.cat([x_i, x_j - x_i], dim=1)), -1, keepdim=True)
return max_value
class GraphConv2d(nn.Module):
"""
Static graph convolution layer
"""
def __init__(self, in_channels, out_channels, conv='mr', act_layer=nn.GELU, norm=None, bias=True):
super(GraphConv2d, self).__init__()
if conv == 'edge':
self.gconv = EdgeConv2d(in_channels, out_channels, act_layer, norm, bias)
elif conv == 'mr':
self.gconv = MRConv2d(in_channels, out_channels, act_layer, norm, bias)
else:
raise NotImplementedError('conv:{} is not supported'.format(conv))
def forward(self, x, edge_index, y=None):
return self.gconv(x, edge_index, y)
class DyGraphConv2d(GraphConv2d):
"""
Dynamic graph convolution layer
"""
def __init__(self, in_channels, out_channels, kernel_size=9, dilation=1, conv='mr', act_layer=nn.GELU,
norm=None, bias=True, stochastic=False, epsilon=0.0, r=1):
super(DyGraphConv2d, self).__init__(in_channels, out_channels, conv, act_layer, norm, bias)
self.k = kernel_size
self.d = dilation
self.r = r
self.dilated_knn_graph = DenseDilatedKnnGraph(kernel_size, dilation, stochastic, epsilon)
def forward(self, x, relative_pos=None):
B, C, H, W = x.shape
y = None
if self.r > 1:
y = F.avg_pool2d(x, self.r, self.r)
y = y.reshape(B, C, -1, 1).contiguous()
x = x.reshape(B, C, -1, 1).contiguous()
edge_index = self.dilated_knn_graph(x, y, relative_pos)
x = super(DyGraphConv2d, self).forward(x, edge_index, y)
return x.reshape(B, -1, H, W).contiguous()
def get_2d_relative_pos_embed(embed_dim, grid_size):
"""
relative position embedding
References: https://arxiv.org/abs/2009.13658
"""
pos_embed = build_sincos2d_pos_embed([grid_size, grid_size], embed_dim)
relative_pos = 2 * torch.matmul(pos_embed, pos_embed.transpose(0, 1)) / pos_embed.shape[1]
return relative_pos
@register_notrace_module # reason: FX can't symbolically trace control flow in forward method
class Grapher(nn.Module):
"""
Grapher module with graph convolution and fc layers
"""
def __init__(self, in_channels, kernel_size=9, dilation=1, conv='mr', act_layer=nn.GELU, norm=None,
bias=True, stochastic=False, epsilon=0.0, r=1, n=196, drop_path=0.0, relative_pos=False):
super(Grapher, self).__init__()
self.channels = in_channels
self.n = n
self.r = r
self.fc1 = nn.Sequential(
nn.Conv2d(in_channels, in_channels, 1, stride=1, padding=0),
nn.BatchNorm2d(in_channels),
)
self.graph_conv = DyGraphConv2d(in_channels, in_channels * 2, kernel_size, dilation, conv,
act_layer, norm, bias, stochastic, epsilon, r)
self.fc2 = nn.Sequential(
nn.Conv2d(in_channels * 2, in_channels, 1, stride=1, padding=0),
nn.BatchNorm2d(in_channels),
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
if relative_pos:
relative_pos_tensor = get_2d_relative_pos_embed(in_channels,
int(n**0.5)).unsqueeze(0).unsqueeze(1)
relative_pos_tensor = F.interpolate(
relative_pos_tensor, size=(n, n//(r*r)), mode='bicubic', align_corners=False)
# self.relative_pos = nn.Parameter(-relative_pos_tensor.squeeze(1))
self.register_buffer('relative_pos', -relative_pos_tensor.squeeze(1))
else:
self.relative_pos = None
def _get_relative_pos(self, relative_pos, H, W):
if relative_pos is None or H * W == self.n:
return relative_pos
else:
N = H * W
N_reduced = N // (self.r * self.r)
return F.interpolate(relative_pos.unsqueeze(0), size=(N, N_reduced), mode="bicubic").squeeze(0)
def forward(self, x):
_tmp = x
x = self.fc1(x)
B, C, H, W = x.shape
relative_pos = self._get_relative_pos(self.relative_pos, H, W)
x = self.graph_conv(x, relative_pos)
x = self.fc2(x)
x = self.drop_path(x) + _tmp
return x