You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
581 lines
24 KiB
581 lines
24 KiB
"""Pre-Activation ResNet v2 with GroupNorm and Weight Standardization.
|
|
|
|
A PyTorch implementation of ResNetV2 adapted from the Google Big-Transfoer (BiT) source code
|
|
at https://github.com/google-research/big_transfer to match timm interfaces. The BiT weights have
|
|
been included here as pretrained models from their original .NPZ checkpoints.
|
|
|
|
Additionally, supports non pre-activation bottleneck for use as a backbone for Vision Transfomers (ViT) and
|
|
extra padding support to allow porting of official Hybrid ResNet pretrained weights from
|
|
https://github.com/google-research/vision_transformer
|
|
|
|
Thanks to the Google team for the above two repositories and associated papers:
|
|
* Big Transfer (BiT): General Visual Representation Learning - https://arxiv.org/abs/1912.11370
|
|
* An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale - https://arxiv.org/abs/2010.11929
|
|
* Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237
|
|
|
|
Original copyright of Google code below, modifications by Ross Wightman, Copyright 2020.
|
|
"""
|
|
# Copyright 2020 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from collections import OrderedDict # pylint: disable=g-importing-member
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from functools import partial
|
|
|
|
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
|
from .helpers import build_model_with_cfg, named_apply, adapt_input_conv
|
|
from .registry import register_model
|
|
from .layers import GroupNormAct, ClassifierHead, DropPath, AvgPool2dSame, create_pool2d, StdConv2d, create_conv2d
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url,
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
|
'first_conv': 'stem.conv', 'classifier': 'head.fc',
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = {
|
|
# pretrained on imagenet21k, finetuned on imagenet1k
|
|
'resnetv2_50x1_bitm': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/BiT-M-R50x1-ILSVRC2012.npz',
|
|
input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0),
|
|
'resnetv2_50x3_bitm': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/BiT-M-R50x3-ILSVRC2012.npz',
|
|
input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0),
|
|
'resnetv2_101x1_bitm': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/BiT-M-R101x1-ILSVRC2012.npz',
|
|
input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0),
|
|
'resnetv2_101x3_bitm': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/BiT-M-R101x3-ILSVRC2012.npz',
|
|
input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0),
|
|
'resnetv2_152x2_bitm': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/BiT-M-R152x2-ILSVRC2012.npz',
|
|
input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0),
|
|
'resnetv2_152x4_bitm': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/BiT-M-R152x4-ILSVRC2012.npz',
|
|
input_size=(3, 480, 480), pool_size=(15, 15), crop_pct=1.0), # only one at 480x480?
|
|
|
|
# trained on imagenet-21k
|
|
'resnetv2_50x1_bitm_in21k': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/BiT-M-R50x1.npz',
|
|
num_classes=21843),
|
|
'resnetv2_50x3_bitm_in21k': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/BiT-M-R50x3.npz',
|
|
num_classes=21843),
|
|
'resnetv2_101x1_bitm_in21k': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/BiT-M-R101x1.npz',
|
|
num_classes=21843),
|
|
'resnetv2_101x3_bitm_in21k': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/BiT-M-R101x3.npz',
|
|
num_classes=21843),
|
|
'resnetv2_152x2_bitm_in21k': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/BiT-M-R152x2.npz',
|
|
num_classes=21843),
|
|
'resnetv2_152x4_bitm_in21k': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/BiT-M-R152x4.npz',
|
|
num_classes=21843),
|
|
|
|
'resnetv2_50x1_bit_distilled': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/distill/R50x1_224.npz',
|
|
interpolation='bicubic'),
|
|
'resnetv2_152x2_bit_teacher': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/distill/R152x2_T_224.npz',
|
|
interpolation='bicubic'),
|
|
'resnetv2_152x2_bit_teacher_384': _cfg(
|
|
url='https://storage.googleapis.com/bit_models/distill/R152x2_T_384.npz',
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, interpolation='bicubic'),
|
|
|
|
'resnetv2_50': _cfg(
|
|
interpolation='bicubic'),
|
|
'resnetv2_50d': _cfg(
|
|
interpolation='bicubic', first_conv='stem.conv1'),
|
|
}
|
|
|
|
|
|
def make_div(v, divisor=8):
|
|
min_value = divisor
|
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
if new_v < 0.9 * v:
|
|
new_v += divisor
|
|
return new_v
|
|
|
|
|
|
class PreActBottleneck(nn.Module):
|
|
"""Pre-activation (v2) bottleneck block.
|
|
|
|
Follows the implementation of "Identity Mappings in Deep Residual Networks":
|
|
https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua
|
|
|
|
Except it puts the stride on 3x3 conv when available.
|
|
"""
|
|
|
|
def __init__(
|
|
self, in_chs, out_chs=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1,
|
|
act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0.):
|
|
super().__init__()
|
|
first_dilation = first_dilation or dilation
|
|
conv_layer = conv_layer or StdConv2d
|
|
norm_layer = norm_layer or partial(GroupNormAct, num_groups=32)
|
|
out_chs = out_chs or in_chs
|
|
mid_chs = make_div(out_chs * bottle_ratio)
|
|
|
|
if proj_layer is not None:
|
|
self.downsample = proj_layer(
|
|
in_chs, out_chs, stride=stride, dilation=dilation, first_dilation=first_dilation, preact=True,
|
|
conv_layer=conv_layer, norm_layer=norm_layer)
|
|
else:
|
|
self.downsample = None
|
|
|
|
self.norm1 = norm_layer(in_chs)
|
|
self.conv1 = conv_layer(in_chs, mid_chs, 1)
|
|
self.norm2 = norm_layer(mid_chs)
|
|
self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups)
|
|
self.norm3 = norm_layer(mid_chs)
|
|
self.conv3 = conv_layer(mid_chs, out_chs, 1)
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
|
|
|
def zero_init_last_bn(self):
|
|
nn.init.zeros_(self.norm3.weight)
|
|
|
|
def forward(self, x):
|
|
x_preact = self.norm1(x)
|
|
|
|
# shortcut branch
|
|
shortcut = x
|
|
if self.downsample is not None:
|
|
shortcut = self.downsample(x_preact)
|
|
|
|
# residual branch
|
|
x = self.conv1(x_preact)
|
|
x = self.conv2(self.norm2(x))
|
|
x = self.conv3(self.norm3(x))
|
|
x = self.drop_path(x)
|
|
return x + shortcut
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
"""Non Pre-activation bottleneck block, equiv to V1.5/V1b Bottleneck. Used for ViT.
|
|
"""
|
|
def __init__(
|
|
self, in_chs, out_chs=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1,
|
|
act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0.):
|
|
super().__init__()
|
|
first_dilation = first_dilation or dilation
|
|
act_layer = act_layer or nn.ReLU
|
|
conv_layer = conv_layer or StdConv2d
|
|
norm_layer = norm_layer or partial(GroupNormAct, num_groups=32)
|
|
out_chs = out_chs or in_chs
|
|
mid_chs = make_div(out_chs * bottle_ratio)
|
|
|
|
if proj_layer is not None:
|
|
self.downsample = proj_layer(
|
|
in_chs, out_chs, stride=stride, dilation=dilation, preact=False,
|
|
conv_layer=conv_layer, norm_layer=norm_layer)
|
|
else:
|
|
self.downsample = None
|
|
|
|
self.conv1 = conv_layer(in_chs, mid_chs, 1)
|
|
self.norm1 = norm_layer(mid_chs)
|
|
self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups)
|
|
self.norm2 = norm_layer(mid_chs)
|
|
self.conv3 = conv_layer(mid_chs, out_chs, 1)
|
|
self.norm3 = norm_layer(out_chs, apply_act=False)
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
|
self.act3 = act_layer(inplace=True)
|
|
|
|
def zero_init_last_bn(self):
|
|
nn.init.zeros_(self.norm3.weight)
|
|
|
|
def forward(self, x):
|
|
# shortcut branch
|
|
shortcut = x
|
|
if self.downsample is not None:
|
|
shortcut = self.downsample(x)
|
|
|
|
# residual
|
|
x = self.conv1(x)
|
|
x = self.norm1(x)
|
|
x = self.conv2(x)
|
|
x = self.norm2(x)
|
|
x = self.conv3(x)
|
|
x = self.norm3(x)
|
|
x = self.drop_path(x)
|
|
x = self.act3(x + shortcut)
|
|
return x
|
|
|
|
|
|
class DownsampleConv(nn.Module):
|
|
def __init__(
|
|
self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None, preact=True,
|
|
conv_layer=None, norm_layer=None):
|
|
super(DownsampleConv, self).__init__()
|
|
self.conv = conv_layer(in_chs, out_chs, 1, stride=stride)
|
|
self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False)
|
|
|
|
def forward(self, x):
|
|
return self.norm(self.conv(x))
|
|
|
|
|
|
class DownsampleAvg(nn.Module):
|
|
def __init__(
|
|
self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None,
|
|
preact=True, conv_layer=None, norm_layer=None):
|
|
""" AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment."""
|
|
super(DownsampleAvg, self).__init__()
|
|
avg_stride = stride if dilation == 1 else 1
|
|
if stride > 1 or dilation > 1:
|
|
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
|
|
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
|
|
else:
|
|
self.pool = nn.Identity()
|
|
self.conv = conv_layer(in_chs, out_chs, 1, stride=1)
|
|
self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False)
|
|
|
|
def forward(self, x):
|
|
return self.norm(self.conv(self.pool(x)))
|
|
|
|
|
|
class ResNetStage(nn.Module):
|
|
"""ResNet Stage."""
|
|
def __init__(self, in_chs, out_chs, stride, dilation, depth, bottle_ratio=0.25, groups=1,
|
|
avg_down=False, block_dpr=None, block_fn=PreActBottleneck,
|
|
act_layer=None, conv_layer=None, norm_layer=None, **block_kwargs):
|
|
super(ResNetStage, self).__init__()
|
|
first_dilation = 1 if dilation in (1, 2) else 2
|
|
layer_kwargs = dict(act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer)
|
|
proj_layer = DownsampleAvg if avg_down else DownsampleConv
|
|
prev_chs = in_chs
|
|
self.blocks = nn.Sequential()
|
|
for block_idx in range(depth):
|
|
drop_path_rate = block_dpr[block_idx] if block_dpr else 0.
|
|
stride = stride if block_idx == 0 else 1
|
|
self.blocks.add_module(str(block_idx), block_fn(
|
|
prev_chs, out_chs, stride=stride, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups,
|
|
first_dilation=first_dilation, proj_layer=proj_layer, drop_path_rate=drop_path_rate,
|
|
**layer_kwargs, **block_kwargs))
|
|
prev_chs = out_chs
|
|
first_dilation = dilation
|
|
proj_layer = None
|
|
|
|
def forward(self, x):
|
|
x = self.blocks(x)
|
|
return x
|
|
|
|
|
|
def create_resnetv2_stem(
|
|
in_chs, out_chs=64, stem_type='', preact=True,
|
|
conv_layer=StdConv2d, norm_layer=partial(GroupNormAct, num_groups=32)):
|
|
stem = OrderedDict()
|
|
assert stem_type in ('', 'fixed', 'same', 'deep', 'deep_fixed', 'deep_same')
|
|
|
|
# NOTE conv padding mode can be changed by overriding the conv_layer def
|
|
if 'deep' in stem_type:
|
|
# A 3 deep 3x3 conv stack as in ResNet V1D models
|
|
mid_chs = out_chs // 2
|
|
stem['conv1'] = conv_layer(in_chs, mid_chs, kernel_size=3, stride=2)
|
|
stem['norm1'] = norm_layer(mid_chs)
|
|
stem['conv2'] = conv_layer(mid_chs, mid_chs, kernel_size=3, stride=1)
|
|
stem['norm2'] = norm_layer(mid_chs)
|
|
stem['conv3'] = conv_layer(mid_chs, out_chs, kernel_size=3, stride=1)
|
|
if not preact:
|
|
stem['norm3'] = norm_layer(out_chs)
|
|
else:
|
|
# The usual 7x7 stem conv
|
|
stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=7, stride=2)
|
|
if not preact:
|
|
stem['norm'] = norm_layer(out_chs)
|
|
|
|
if 'fixed' in stem_type:
|
|
# 'fixed' SAME padding approximation that is used in BiT models
|
|
stem['pad'] = nn.ConstantPad2d(1, 0.)
|
|
stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
|
|
elif 'same' in stem_type:
|
|
# full, input size based 'SAME' padding, used in ViT Hybrid model
|
|
stem['pool'] = create_pool2d('max', kernel_size=3, stride=2, padding='same')
|
|
else:
|
|
# the usual PyTorch symmetric padding
|
|
stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
|
|
return nn.Sequential(stem)
|
|
|
|
|
|
class ResNetV2(nn.Module):
|
|
"""Implementation of Pre-activation (v2) ResNet mode.
|
|
"""
|
|
|
|
def __init__(
|
|
self, layers, channels=(256, 512, 1024, 2048),
|
|
num_classes=1000, in_chans=3, global_pool='avg', output_stride=32,
|
|
width_factor=1, stem_chs=64, stem_type='', avg_down=False, preact=True,
|
|
act_layer=nn.ReLU, conv_layer=StdConv2d, norm_layer=partial(GroupNormAct, num_groups=32),
|
|
drop_rate=0., drop_path_rate=0., zero_init_last_bn=True):
|
|
super().__init__()
|
|
self.num_classes = num_classes
|
|
self.drop_rate = drop_rate
|
|
wf = width_factor
|
|
|
|
self.feature_info = []
|
|
stem_chs = make_div(stem_chs * wf)
|
|
self.stem = create_resnetv2_stem(
|
|
in_chans, stem_chs, stem_type, preact, conv_layer=conv_layer, norm_layer=norm_layer)
|
|
stem_feat = ('stem.conv3' if 'deep' in stem_type else 'stem.conv') if preact else 'stem.norm'
|
|
self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=stem_feat))
|
|
|
|
prev_chs = stem_chs
|
|
curr_stride = 4
|
|
dilation = 1
|
|
block_dprs = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)]
|
|
block_fn = PreActBottleneck if preact else Bottleneck
|
|
self.stages = nn.Sequential()
|
|
for stage_idx, (d, c, bdpr) in enumerate(zip(layers, channels, block_dprs)):
|
|
out_chs = make_div(c * wf)
|
|
stride = 1 if stage_idx == 0 else 2
|
|
if curr_stride >= output_stride:
|
|
dilation *= stride
|
|
stride = 1
|
|
stage = ResNetStage(
|
|
prev_chs, out_chs, stride=stride, dilation=dilation, depth=d, avg_down=avg_down,
|
|
act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer, block_dpr=bdpr, block_fn=block_fn)
|
|
prev_chs = out_chs
|
|
curr_stride *= stride
|
|
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{stage_idx}')]
|
|
self.stages.add_module(str(stage_idx), stage)
|
|
|
|
self.num_features = prev_chs
|
|
self.norm = norm_layer(self.num_features) if preact else nn.Identity()
|
|
self.head = ClassifierHead(
|
|
self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, use_conv=True)
|
|
|
|
self.init_weights(zero_init_last_bn=zero_init_last_bn)
|
|
|
|
def init_weights(self, zero_init_last_bn=True):
|
|
named_apply(partial(_init_weights, zero_init_last_bn=zero_init_last_bn), self)
|
|
|
|
@torch.jit.ignore()
|
|
def load_pretrained(self, checkpoint_path, prefix='resnet/'):
|
|
_load_weights(self, checkpoint_path, prefix)
|
|
|
|
def get_classifier(self):
|
|
return self.head.fc
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
self.num_classes = num_classes
|
|
self.head = ClassifierHead(
|
|
self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, use_conv=True)
|
|
|
|
def forward_features(self, x):
|
|
x = self.stem(x)
|
|
x = self.stages(x)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.head(x)
|
|
return x
|
|
|
|
|
|
def _init_weights(module: nn.Module, name: str = '', zero_init_last_bn=True):
|
|
if isinstance(module, nn.Linear) or ('head.fc' in name and isinstance(module, nn.Conv2d)):
|
|
nn.init.normal_(module.weight, mean=0.0, std=0.01)
|
|
nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Conv2d):
|
|
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
|
|
if module.bias is not None:
|
|
nn.init.zeros_(module.bias)
|
|
elif isinstance(module, (nn.BatchNorm2d, nn.LayerNorm, nn.GroupNorm)):
|
|
nn.init.ones_(module.weight)
|
|
nn.init.zeros_(module.bias)
|
|
elif zero_init_last_bn and hasattr(module, 'zero_init_last_bn'):
|
|
module.zero_init_last_bn()
|
|
|
|
|
|
@torch.no_grad()
|
|
def _load_weights(model: nn.Module, checkpoint_path: str, prefix: str = 'resnet/'):
|
|
import numpy as np
|
|
|
|
def t2p(conv_weights):
|
|
"""Possibly convert HWIO to OIHW."""
|
|
if conv_weights.ndim == 4:
|
|
conv_weights = conv_weights.transpose([3, 2, 0, 1])
|
|
return torch.from_numpy(conv_weights)
|
|
|
|
weights = np.load(checkpoint_path)
|
|
stem_conv_w = adapt_input_conv(
|
|
model.stem.conv.weight.shape[1], t2p(weights[f'{prefix}root_block/standardized_conv2d/kernel']))
|
|
model.stem.conv.weight.copy_(stem_conv_w)
|
|
model.norm.weight.copy_(t2p(weights[f'{prefix}group_norm/gamma']))
|
|
model.norm.bias.copy_(t2p(weights[f'{prefix}group_norm/beta']))
|
|
if model.head.fc.weight.shape[0] == weights[f'{prefix}head/conv2d/kernel'].shape[-1]:
|
|
model.head.fc.weight.copy_(t2p(weights[f'{prefix}head/conv2d/kernel']))
|
|
model.head.fc.bias.copy_(t2p(weights[f'{prefix}head/conv2d/bias']))
|
|
for i, (sname, stage) in enumerate(model.stages.named_children()):
|
|
for j, (bname, block) in enumerate(stage.blocks.named_children()):
|
|
cname = 'standardized_conv2d'
|
|
block_prefix = f'{prefix}block{i + 1}/unit{j + 1:02d}/'
|
|
block.conv1.weight.copy_(t2p(weights[f'{block_prefix}a/{cname}/kernel']))
|
|
block.conv2.weight.copy_(t2p(weights[f'{block_prefix}b/{cname}/kernel']))
|
|
block.conv3.weight.copy_(t2p(weights[f'{block_prefix}c/{cname}/kernel']))
|
|
block.norm1.weight.copy_(t2p(weights[f'{block_prefix}a/group_norm/gamma']))
|
|
block.norm2.weight.copy_(t2p(weights[f'{block_prefix}b/group_norm/gamma']))
|
|
block.norm3.weight.copy_(t2p(weights[f'{block_prefix}c/group_norm/gamma']))
|
|
block.norm1.bias.copy_(t2p(weights[f'{block_prefix}a/group_norm/beta']))
|
|
block.norm2.bias.copy_(t2p(weights[f'{block_prefix}b/group_norm/beta']))
|
|
block.norm3.bias.copy_(t2p(weights[f'{block_prefix}c/group_norm/beta']))
|
|
if block.downsample is not None:
|
|
w = weights[f'{block_prefix}a/proj/{cname}/kernel']
|
|
block.downsample.conv.weight.copy_(t2p(w))
|
|
|
|
|
|
def _create_resnetv2(variant, pretrained=False, **kwargs):
|
|
feature_cfg = dict(flatten_sequential=True)
|
|
return build_model_with_cfg(
|
|
ResNetV2, variant, pretrained,
|
|
default_cfg=default_cfgs[variant],
|
|
feature_cfg=feature_cfg,
|
|
pretrained_custom_load=True,
|
|
**kwargs)
|
|
|
|
|
|
def _create_resnetv2_bit(variant, pretrained=False, **kwargs):
|
|
return _create_resnetv2(
|
|
variant, pretrained=pretrained, stem_type='fixed', conv_layer=partial(StdConv2d, eps=1e-8), **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_50x1_bitm(pretrained=False, **kwargs):
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_50x1_bitm', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=1, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_50x3_bitm(pretrained=False, **kwargs):
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_50x3_bitm', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=3, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_101x1_bitm(pretrained=False, **kwargs):
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_101x1_bitm', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=1, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_101x3_bitm(pretrained=False, **kwargs):
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_101x3_bitm', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=3, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_152x2_bitm(pretrained=False, **kwargs):
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_152x2_bitm', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_152x4_bitm(pretrained=False, **kwargs):
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_152x4_bitm', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=4, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_50x1_bitm_in21k(pretrained=False, **kwargs):
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_50x1_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843),
|
|
layers=[3, 4, 6, 3], width_factor=1, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_50x3_bitm_in21k(pretrained=False, **kwargs):
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_50x3_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843),
|
|
layers=[3, 4, 6, 3], width_factor=3, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_101x1_bitm_in21k(pretrained=False, **kwargs):
|
|
return _create_resnetv2(
|
|
'resnetv2_101x1_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843),
|
|
layers=[3, 4, 23, 3], width_factor=1, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_101x3_bitm_in21k(pretrained=False, **kwargs):
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_101x3_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843),
|
|
layers=[3, 4, 23, 3], width_factor=3, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_152x2_bitm_in21k(pretrained=False, **kwargs):
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_152x2_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843),
|
|
layers=[3, 8, 36, 3], width_factor=2, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_152x4_bitm_in21k(pretrained=False, **kwargs):
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_152x4_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843),
|
|
layers=[3, 8, 36, 3], width_factor=4, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_50x1_bit_distilled(pretrained=False, **kwargs):
|
|
""" ResNetV2-50x1-BiT Distilled
|
|
Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237
|
|
"""
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_50x1_bit_distilled', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=1, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_152x2_bit_teacher(pretrained=False, **kwargs):
|
|
""" ResNetV2-152x2-BiT Teacher
|
|
Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237
|
|
"""
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_152x2_bit_teacher', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_152x2_bit_teacher_384(pretrained=False, **kwargs):
|
|
""" ResNetV2-152xx-BiT Teacher @ 384x384
|
|
Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237
|
|
"""
|
|
return _create_resnetv2_bit(
|
|
'resnetv2_152x2_bit_teacher_384', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_50(pretrained=False, **kwargs):
|
|
return _create_resnetv2(
|
|
'resnetv2_50', pretrained=pretrained,
|
|
layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=nn.BatchNorm2d, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def resnetv2_50d(pretrained=False, **kwargs):
|
|
return _create_resnetv2(
|
|
'resnetv2_50d', pretrained=pretrained,
|
|
layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=nn.BatchNorm2d,
|
|
stem_type='deep', avg_down=True, **kwargs)
|