You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/models/hub.py

94 lines
3.1 KiB

import json
import logging
import os
from functools import partial
from typing import Union, Optional
import torch
from torch.hub import load_state_dict_from_url, download_url_to_file, urlparse, HASH_REGEX
try:
from torch.hub import get_dir
except ImportError:
from torch.hub import _get_torch_home as get_dir
from timm import __version__
try:
from huggingface_hub import hf_hub_url
from huggingface_hub import cached_download
cached_download = partial(cached_download, library_name="timm", library_version=__version__)
except ImportError:
hf_hub_url = None
cached_download = None
_logger = logging.getLogger(__name__)
def get_cache_dir(child=''):
"""
Returns the location of the directory where models are cached (and creates it if necessary).
"""
# Issue warning to move data if old env is set
if os.getenv('TORCH_MODEL_ZOO'):
_logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead')
hub_dir = get_dir()
children = () if not child else child,
model_dir = os.path.join(hub_dir, 'checkpoints', *children)
os.makedirs(model_dir, exist_ok=True)
return model_dir
def download_cached_file(url, check_hash=True, progress=False):
parts = urlparse(url)
filename = os.path.basename(parts.path)
cached_file = os.path.join(get_cache_dir(), filename)
if not os.path.exists(cached_file):
_logger.info('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = None
if check_hash:
r = HASH_REGEX.search(filename) # r is Optional[Match[str]]
hash_prefix = r.group(1) if r else None
download_url_to_file(url, cached_file, hash_prefix, progress=progress)
return cached_file
def has_hf_hub(necessary=False):
if hf_hub_url is None and necessary:
# if no HF Hub module installed and it is necessary to continue, raise error
raise RuntimeError(
'HuggignFace Hub model specified but package not installed. Run `pip install huggingface_hub`.')
return hf_hub_url is not None
def hf_split(hf_id):
rev_split = hf_id.split('#')
assert 0 < len(rev_split) <= 2, 'HuggingFace HUB identifier should only contain on # character to identify revision.'
hf_model_id = rev_split[0]
hf_revision = rev_split[-1] if len(rev_split) > 1 else None
return hf_model_id, hf_revision
def load_cfg_from_json(json_file: Union[str, os.PathLike]):
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return json.loads(text)
def _download_from_hf(model_id: str, filename: str):
hf_model_id, hf_revision = hf_split(model_id)
url = hf_hub_url(hf_model_id, filename, revision=hf_revision)
return cached_download(url, cache_dir=get_cache_dir('hf'))
def load_config_from_hf(model_id: str):
assert has_hf_hub(True)
cached_file = _download_from_hf(model_id, 'config.json')
return load_cfg_from_json(cached_file)
def load_state_dict_from_hf(model_id: str):
assert has_hf_hub(True)
cached_file = _download_from_hf(model_id, 'pytorch_model.bin')
state_dict = torch.load(cached_file, map_location='cpu')
return state_dict