93 lines
3.8 KiB
93 lines
3.8 KiB
import math
|
|
|
|
import torch
|
|
from torch.optim.optimizer import Optimizer
|
|
|
|
|
|
class Nadam(Optimizer):
|
|
"""Implements Nadam algorithm (a variant of Adam based on Nesterov momentum).
|
|
|
|
It has been proposed in `Incorporating Nesterov Momentum into Adam`__.
|
|
|
|
Arguments:
|
|
params (iterable): iterable of parameters to optimize or dicts defining
|
|
parameter groups
|
|
lr (float, optional): learning rate (default: 2e-3)
|
|
betas (Tuple[float, float], optional): coefficients used for computing
|
|
running averages of gradient and its square
|
|
eps (float, optional): term added to the denominator to improve
|
|
numerical stability (default: 1e-8)
|
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
|
schedule_decay (float, optional): momentum schedule decay (default: 4e-3)
|
|
|
|
__ http://cs229.stanford.edu/proj2015/054_report.pdf
|
|
__ http://www.cs.toronto.edu/~fritz/absps/momentum.pdf
|
|
|
|
Originally taken from: https://github.com/pytorch/pytorch/pull/1408
|
|
NOTE: Has potential issues but does work well on some problems.
|
|
"""
|
|
|
|
def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8,
|
|
weight_decay=0, schedule_decay=4e-3):
|
|
if not 0.0 <= lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
defaults = dict(
|
|
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, schedule_decay=schedule_decay)
|
|
super(Nadam, self).__init__(params, defaults)
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Arguments:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
grad = p.grad
|
|
state = self.state[p]
|
|
|
|
# State initialization
|
|
if len(state) == 0:
|
|
state['step'] = 0
|
|
state['m_schedule'] = 1.
|
|
state['exp_avg'] = torch.zeros_like(p)
|
|
state['exp_avg_sq'] = torch.zeros_like(p)
|
|
|
|
# Warming momentum schedule
|
|
m_schedule = state['m_schedule']
|
|
schedule_decay = group['schedule_decay']
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
|
beta1, beta2 = group['betas']
|
|
eps = group['eps']
|
|
state['step'] += 1
|
|
t = state['step']
|
|
bias_correction2 = 1 - beta2 ** t
|
|
|
|
if group['weight_decay'] != 0:
|
|
grad = grad.add(p, alpha=group['weight_decay'])
|
|
|
|
momentum_cache_t = beta1 * (1. - 0.5 * (0.96 ** (t * schedule_decay)))
|
|
momentum_cache_t_1 = beta1 * (1. - 0.5 * (0.96 ** ((t + 1) * schedule_decay)))
|
|
m_schedule_new = m_schedule * momentum_cache_t
|
|
m_schedule_next = m_schedule * momentum_cache_t * momentum_cache_t_1
|
|
state['m_schedule'] = m_schedule_new
|
|
|
|
# Decay the first and second moment running average coefficient
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1. - beta1)
|
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1. - beta2)
|
|
|
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
|
|
p.addcdiv_(grad, denom, value=-group['lr'] * (1. - momentum_cache_t) / (1. - m_schedule_new))
|
|
p.addcdiv_(exp_avg, denom, value=-group['lr'] * momentum_cache_t_1 / (1. - m_schedule_next))
|
|
|
|
return loss
|