You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/scheduler/cosine_lr.py

73 lines
2.6 KiB

import logging
import math
import numpy as np
import torch
from .scheduler import Scheduler
logger = logging.getLogger(__name__)
class CosineLRScheduler(Scheduler):
"""
Cosine annealing with restarts.
This is described in the paper https://arxiv.org/abs/1608.03983.
"""
def __init__(self,
optimizer: torch.optim.Optimizer,
t_initial: int,
t_mul: float = 1.,
lr_min: float = 0.,
decay_rate: float = 1.,
warmup_updates=0,
warmup_lr_init=0,
initialize=True) -> None:
super().__init__(optimizer, param_group_field="lr", initialize=initialize)
assert t_initial > 0
assert lr_min >= 0
if t_initial == 1 and t_mul == 1 and decay_rate == 1:
logger.warning("Cosine annealing scheduler will have no effect on the learning "
"rate since t_initial = t_mul = eta_mul = 1.")
self.t_initial = t_initial
self.t_mul = t_mul
self.lr_min = lr_min
self.decay_rate = decay_rate
self.warmup_updates = warmup_updates
self.warmup_lr_init = warmup_lr_init
if self.warmup_updates:
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_updates for v in self.base_values]
else:
self.warmup_steps = [1 for _ in self.base_values]
if self.warmup_lr_init:
super().update_groups(self.warmup_lr_init)
def get_epoch_values(self, epoch: int):
# this scheduler doesn't update on epoch
return None
def get_update_values(self, num_updates: int):
if num_updates < self.warmup_updates:
lrs = [self.warmup_lr_init + num_updates * s for s in self.warmup_steps]
else:
curr_updates = num_updates - self.warmup_updates
if self.t_mul != 1:
i = math.floor(math.log(1 - curr_updates / self.t_initial * (1 - self.t_mul), self.t_mul))
t_i = self.t_mul ** i * self.t_initial
t_curr = curr_updates - (1 - self.t_mul ** i) / (1 - self.t_mul) * self.t_initial
else:
i = curr_updates // self.t_initial
t_i = self.t_initial
t_curr = curr_updates - (self.t_initial * i)
gamma = self.decay_rate ** i
lr_min = self.lr_min * gamma
lr_max_values = [v * gamma for v in self.base_values]
lrs = [
lr_min + 0.5 * (lr_max - lr_min) * (1 + math.cos(math.pi * t_curr / t_i)) for lr_max in lr_max_values
]
return lrs