You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
74 lines
2.3 KiB
74 lines
2.3 KiB
import torch
|
|
from torchvision import transforms
|
|
from PIL import Image
|
|
import math
|
|
|
|
|
|
DEFAULT_CROP_PCT = 0.875
|
|
|
|
IMAGENET_DPN_MEAN = [124 / 255, 117 / 255, 104 / 255]
|
|
IMAGENET_DPN_STD = [1 / (.0167 * 255)] * 3
|
|
IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
|
|
IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]
|
|
|
|
|
|
class LeNormalize(object):
|
|
"""Normalize to -1..1 in Google Inception style
|
|
"""
|
|
def __call__(self, tensor):
|
|
for t in tensor:
|
|
t.sub_(0.5).mul_(2.0)
|
|
return tensor
|
|
|
|
|
|
def transforms_imagenet_train(model_name, img_size=224, scale=(0.1, 1.0), color_jitter=(0.333, 0.333, 0.333)):
|
|
if 'dpn' in model_name:
|
|
normalize = transforms.Normalize(
|
|
mean=IMAGENET_DPN_MEAN,
|
|
std=IMAGENET_DPN_STD)
|
|
elif 'inception' in model_name:
|
|
normalize = LeNormalize()
|
|
else:
|
|
normalize = transforms.Normalize(
|
|
mean=IMAGENET_DEFAULT_MEAN,
|
|
std=IMAGENET_DEFAULT_STD)
|
|
|
|
return transforms.Compose([
|
|
transforms.RandomResizedCrop(img_size, scale=scale),
|
|
transforms.RandomHorizontalFlip(),
|
|
transforms.ColorJitter(*color_jitter),
|
|
transforms.ToTensor(),
|
|
normalize])
|
|
|
|
|
|
def transforms_imagenet_eval(model_name, img_size=224, crop_pct=None):
|
|
crop_pct = crop_pct or DEFAULT_CROP_PCT
|
|
if 'dpn' in model_name:
|
|
if crop_pct is None:
|
|
# Use default 87.5% crop for model's native img_size
|
|
# but use 100% crop for larger than native as it
|
|
# improves test time results across all models.
|
|
if img_size == 224:
|
|
scale_size = int(math.floor(img_size / DEFAULT_CROP_PCT))
|
|
else:
|
|
scale_size = img_size
|
|
else:
|
|
scale_size = int(math.floor(img_size / crop_pct))
|
|
normalize = transforms.Normalize(
|
|
mean=IMAGENET_DPN_MEAN,
|
|
std=IMAGENET_DPN_STD)
|
|
elif 'inception' in model_name:
|
|
scale_size = int(math.floor(img_size / crop_pct))
|
|
normalize = LeNormalize()
|
|
else:
|
|
scale_size = int(math.floor(img_size / crop_pct))
|
|
normalize = transforms.Normalize(
|
|
mean=IMAGENET_DEFAULT_MEAN,
|
|
std=IMAGENET_DEFAULT_STD)
|
|
|
|
return transforms.Compose([
|
|
transforms.Resize(scale_size, Image.BICUBIC),
|
|
transforms.CenterCrop(img_size),
|
|
transforms.ToTensor(),
|
|
normalize])
|