You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
392 lines
15 KiB
392 lines
15 KiB
import argparse
|
|
import time
|
|
from collections import OrderedDict
|
|
from datetime import datetime
|
|
|
|
from dataset import Dataset
|
|
from models import model_factory, transforms_imagenet_eval, transforms_imagenet_train
|
|
from utils import *
|
|
from optim import nadam
|
|
import scheduler
|
|
|
|
import torch
|
|
import torch.nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
import torch.utils.data as data
|
|
import torchvision.utils
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
parser = argparse.ArgumentParser(description='Training')
|
|
parser.add_argument('data', metavar='DIR',
|
|
help='path to dataset')
|
|
parser.add_argument('--model', default='resnet101', type=str, metavar='MODEL',
|
|
help='Name of model to train (default: "countception"')
|
|
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
|
|
help='Optimizer (default: "sgd"')
|
|
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
|
|
help='Optimizer Epsilon (default: 1e-8)')
|
|
parser.add_argument('--gp', default='avg', type=str, metavar='POOL',
|
|
help='Type of global pool, "avg", "max", "avgmax", "avgmaxc" (default: "avg")')
|
|
parser.add_argument('--tta', type=int, default=0, metavar='N',
|
|
help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)')
|
|
parser.add_argument('--pretrained', action='store_true', default=False,
|
|
help='Start with pretrained version of specified network (if avail)')
|
|
parser.add_argument('--img-size', type=int, default=224, metavar='N',
|
|
help='Image patch size (default: 224)')
|
|
parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N',
|
|
help='input batch size for training (default: 32)')
|
|
parser.add_argument('-s', '--initial-batch-size', type=int, default=0, metavar='N',
|
|
help='initial input batch size for training (default: 0)')
|
|
parser.add_argument('--epochs', type=int, default=200, metavar='N',
|
|
help='number of epochs to train (default: 2)')
|
|
parser.add_argument('--start-epoch', default=None, type=int, metavar='N',
|
|
help='manual epoch number (useful on restarts)')
|
|
parser.add_argument('--decay-epochs', type=int, default=30, metavar='N',
|
|
help='epoch interval to decay LR')
|
|
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
|
|
help='LR decay rate (default: 0.1)')
|
|
parser.add_argument('--sched', default='step', type=str, metavar='SCHEDULER',
|
|
help='LR scheduler (default: "step"')
|
|
parser.add_argument('--drop', type=float, default=0.0, metavar='DROP',
|
|
help='Dropout rate (default: 0.1)')
|
|
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
|
|
help='learning rate (default: 0.01)')
|
|
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
|
|
help='SGD momentum (default: 0.9)')
|
|
parser.add_argument('--weight-decay', type=float, default=0.0005, metavar='M',
|
|
help='weight decay (default: 0.0001)')
|
|
parser.add_argument('--seed', type=int, default=42, metavar='S',
|
|
help='random seed (default: 42)')
|
|
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
|
|
help='how many batches to wait before logging training status')
|
|
parser.add_argument('--recovery-interval', type=int, default=1000, metavar='N',
|
|
help='how many batches to wait before writing recovery checkpoint')
|
|
parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
|
|
help='how many training processes to use (default: 1)')
|
|
parser.add_argument('--num-gpu', type=int, default=1,
|
|
help='Number of GPUS to use')
|
|
parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
|
|
help='path to init checkpoint (default: none)')
|
|
parser.add_argument('--resume', default='', type=str, metavar='PATH',
|
|
help='path to latest checkpoint (default: none)')
|
|
parser.add_argument('--save-images', action='store_true', default=False,
|
|
help='save images of input bathes every log interval for debugging')
|
|
parser.add_argument('--output', default='', type=str, metavar='PATH',
|
|
help='path to output folder (default: none, current dir)')
|
|
|
|
|
|
def main():
|
|
args = parser.parse_args()
|
|
|
|
if args.output:
|
|
output_base = args.output
|
|
else:
|
|
output_base = './output'
|
|
exp_name = '-'.join([
|
|
datetime.now().strftime("%Y%m%d-%H%M%S"),
|
|
args.model,
|
|
str(args.img_size)])
|
|
output_dir = get_outdir(output_base, 'train', exp_name)
|
|
|
|
batch_size = args.batch_size
|
|
num_epochs = args.epochs
|
|
torch.manual_seed(args.seed)
|
|
|
|
dataset_train = Dataset(
|
|
os.path.join(args.data, 'train'),
|
|
transform=transforms_imagenet_train(args.model))
|
|
|
|
loader_train = data.DataLoader(
|
|
dataset_train,
|
|
batch_size=batch_size,
|
|
shuffle=True,
|
|
num_workers=args.workers
|
|
)
|
|
|
|
dataset_eval = Dataset(
|
|
os.path.join(args.data, 'validation'),
|
|
transform=transforms_imagenet_eval(args.model))
|
|
|
|
loader_eval = data.DataLoader(
|
|
dataset_eval,
|
|
batch_size=4 * args.batch_size,
|
|
shuffle=False,
|
|
num_workers=args.workers
|
|
)
|
|
|
|
model = model_factory.create_model(
|
|
args.model,
|
|
pretrained=args.pretrained,
|
|
num_classes=1000,
|
|
drop_rate=args.drop,
|
|
global_pool=args.gp,
|
|
checkpoint_path=args.initial_checkpoint)
|
|
|
|
# optionally resume from a checkpoint
|
|
start_epoch = 0 if args.start_epoch is None else args.start_epoch
|
|
optimizer_state = None
|
|
if args.resume:
|
|
if os.path.isfile(args.resume):
|
|
print("=> loading checkpoint '{}'".format(args.resume))
|
|
checkpoint = torch.load(args.resume)
|
|
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
|
new_state_dict = OrderedDict()
|
|
for k, v in checkpoint['state_dict'].items():
|
|
if k.startswith('module'):
|
|
name = k[7:] # remove `module.`
|
|
else:
|
|
name = k
|
|
new_state_dict[name] = v
|
|
model.load_state_dict(new_state_dict)
|
|
if 'optimizer' in checkpoint:
|
|
optimizer_state = checkpoint['optimizer']
|
|
print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
|
|
start_epoch = checkpoint['epoch'] if args.start_epoch is None else args.start_epoch
|
|
else:
|
|
model.load_state_dict(checkpoint)
|
|
else:
|
|
print("=> no checkpoint found at '{}'".format(args.resume))
|
|
return False
|
|
|
|
if args.num_gpu > 1:
|
|
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda()
|
|
else:
|
|
model.cuda()
|
|
|
|
train_loss_fn = validate_loss_fn = torch.nn.CrossEntropyLoss()
|
|
train_loss_fn = train_loss_fn.cuda()
|
|
validate_loss_fn = validate_loss_fn.cuda()
|
|
|
|
if args.opt.lower() == 'sgd':
|
|
optimizer = optim.SGD(
|
|
model.parameters(), lr=args.lr,
|
|
momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True)
|
|
elif args.opt.lower() == 'adam':
|
|
optimizer = optim.Adam(
|
|
model.parameters(), lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps)
|
|
elif args.opt.lower() == 'nadam':
|
|
optimizer = nadam.Nadam(
|
|
model.parameters(), lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps)
|
|
elif args.opt.lower() == 'adadelta':
|
|
optimizer = optim.Adadelta(
|
|
model.parameters(), lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps)
|
|
elif args.opt.lower() == 'rmsprop':
|
|
optimizer = optim.RMSprop(
|
|
model.parameters(), lr=args.lr, alpha=0.9, eps=args.opt_eps,
|
|
momentum=args.momentum, weight_decay=args.weight_decay)
|
|
else:
|
|
assert False and "Invalid optimizer"
|
|
exit(1)
|
|
|
|
if optimizer_state is not None:
|
|
optimizer.load_state_dict(optimizer_state)
|
|
|
|
if args.sched == 'cosine':
|
|
lr_scheduler = scheduler.CosineLRScheduler(
|
|
optimizer,
|
|
t_initial=130,
|
|
t_mul=1.0,
|
|
lr_min=0,
|
|
decay_rate=args.decay_rate,
|
|
warmup_lr_init=1e-4,
|
|
warmup_t=3,
|
|
t_in_epochs=True,
|
|
)
|
|
elif args.sched == 'tanh':
|
|
lr_scheduler = scheduler.TanhLRScheduler(
|
|
optimizer,
|
|
t_initial=130,
|
|
t_mul=1.0,
|
|
lr_min=1e-6,
|
|
warmup_lr_init=.001,
|
|
warmup_t=3,
|
|
cycle_limit=1,
|
|
t_in_epochs=True,
|
|
)
|
|
else:
|
|
lr_scheduler = scheduler.StepLRScheduler(
|
|
optimizer,
|
|
decay_t=args.decay_epochs,
|
|
decay_rate=args.decay_rate,
|
|
)
|
|
|
|
saver = CheckpointSaver(checkpoint_dir=output_dir)
|
|
best_loss = None
|
|
try:
|
|
for epoch in range(start_epoch, num_epochs):
|
|
|
|
train_metrics = train_epoch(
|
|
epoch, model, loader_train, optimizer, train_loss_fn, args,
|
|
lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir)
|
|
|
|
eval_metrics = validate(
|
|
model, loader_eval, validate_loss_fn, args)
|
|
|
|
if lr_scheduler is not None:
|
|
lr_scheduler.step(epoch, eval_metrics['eval_loss'])
|
|
|
|
update_summary(
|
|
epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
|
|
write_header=best_loss is None)
|
|
|
|
# save proper checkpoint with eval metric
|
|
best_loss = saver.save_checkpoint({
|
|
'epoch': epoch + 1,
|
|
'arch': args.model,
|
|
'state_dict': model.state_dict(),
|
|
'optimizer': optimizer.state_dict(),
|
|
'args': args,
|
|
'gp': args.gp,
|
|
},
|
|
epoch=epoch + 1,
|
|
metric=eval_metrics['eval_loss'])
|
|
|
|
except KeyboardInterrupt:
|
|
pass
|
|
print('*** Best loss: {0} (epoch {1})'.format(best_loss[1], best_loss[0]))
|
|
|
|
|
|
def train_epoch(
|
|
epoch, model, loader, optimizer, loss_fn, args,
|
|
lr_scheduler=None, saver=None, output_dir=''):
|
|
|
|
batch_time_m = AverageMeter()
|
|
data_time_m = AverageMeter()
|
|
losses_m = AverageMeter()
|
|
|
|
model.train()
|
|
|
|
end = time.time()
|
|
last_idx = len(loader) - 1
|
|
num_updates = epoch * len(loader)
|
|
for batch_idx, (input, target) in enumerate(loader):
|
|
last_batch = batch_idx == last_idx
|
|
data_time_m.update(time.time() - end)
|
|
|
|
input = input.cuda()
|
|
if isinstance(target, (tuple, list)):
|
|
target = [t.cuda() for t in target]
|
|
else:
|
|
target = target.cuda()
|
|
|
|
output = model(input)
|
|
|
|
loss = loss_fn(output, target)
|
|
losses_m.update(loss.item(), input.size(0))
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
num_updates += 1
|
|
|
|
batch_time_m.update(time.time() - end)
|
|
if last_batch or batch_idx % args.log_interval == 0:
|
|
lrl = [param_group['lr'] for param_group in optimizer.param_groups]
|
|
lr = sum(lrl) / len(lrl)
|
|
|
|
print('Train: {} [{}/{} ({:.0f}%)] '
|
|
'Loss: {loss.val:.6f} ({loss.avg:.4f}) '
|
|
'Time: {batch_time.val:.3f}s, {rate:.3f}/s '
|
|
'({batch_time.avg:.3f}s, {rate_avg:.3f}/s) '
|
|
'LR: {lr:.4f} '
|
|
'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format(
|
|
epoch,
|
|
batch_idx, len(loader),
|
|
100. * batch_idx / last_idx,
|
|
loss=losses_m,
|
|
batch_time=batch_time_m,
|
|
rate=input.size(0) / batch_time_m.val,
|
|
rate_avg=input.size(0) / batch_time_m.avg,
|
|
lr=lr,
|
|
data_time=data_time_m))
|
|
|
|
if args.save_images:
|
|
torchvision.utils.save_image(
|
|
input,
|
|
os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx),
|
|
padding=0,
|
|
normalize=True)
|
|
|
|
if saver is not None and last_batch or batch_idx % args.recovery_interval == 0:
|
|
save_epoch = epoch + 1 if last_batch else epoch
|
|
saver.save_recovery({
|
|
'epoch': save_epoch,
|
|
'arch': args.model,
|
|
'state_dict': model.state_dict(),
|
|
'optimizer': optimizer.state_dict(),
|
|
'args': args,
|
|
'gp': args.gp,
|
|
},
|
|
epoch=save_epoch,
|
|
batch_idx=batch_idx)
|
|
|
|
if lr_scheduler is not None:
|
|
lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg)
|
|
|
|
end = time.time()
|
|
|
|
return OrderedDict([('train_loss', losses_m.avg)])
|
|
|
|
|
|
def validate(model, loader, loss_fn, args):
|
|
batch_time_m = AverageMeter()
|
|
losses_m = AverageMeter()
|
|
prec1_m = AverageMeter()
|
|
prec5_m = AverageMeter()
|
|
|
|
model.eval()
|
|
|
|
end = time.time()
|
|
last_idx = len(loader) - 1
|
|
with torch.no_grad():
|
|
for batch_idx, (input, target) in enumerate(loader):
|
|
last_batch = batch_idx == last_idx
|
|
|
|
input = input.cuda()
|
|
if isinstance(target, list):
|
|
target = target[0].cuda()
|
|
else:
|
|
target = target.cuda()
|
|
|
|
output = model(input)
|
|
if isinstance(output, (tuple, list)):
|
|
output = output[0]
|
|
|
|
# augmentation reduction
|
|
reduce_factor = args.tta
|
|
if reduce_factor > 1:
|
|
output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2)
|
|
target = target[0:target.size(0):reduce_factor]
|
|
|
|
# calc loss
|
|
loss = loss_fn(output, target)
|
|
losses_m.update(loss.item(), input.size(0))
|
|
|
|
# metrics
|
|
prec1, prec5 = accuracy(output, target, topk=(1, 5))
|
|
prec1_m.update(prec1.item(), output.size(0))
|
|
prec5_m.update(prec5.item(), output.size(0))
|
|
|
|
batch_time_m.update(time.time() - end)
|
|
end = time.time()
|
|
if last_batch or batch_idx % args.log_interval == 0:
|
|
print('Test: [{0}/{1}]\t'
|
|
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
|
|
'Loss {loss.val:.4f} ({loss.avg:.4f}) '
|
|
'Prec@1 {top1.val:.4f} ({top1.avg:.4f}) '
|
|
'Prec@5 {top5.val:.4f} ({top5.avg:.4f})'.format(
|
|
batch_idx, last_idx,
|
|
batch_time=batch_time_m, loss=losses_m,
|
|
top1=prec1_m, top5=prec5_m))
|
|
|
|
metrics = OrderedDict([('eval_loss', losses_m.avg), ('eval_prec1', prec1_m.avg)])
|
|
|
|
return metrics
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|