You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/models/activations.py

181 lines
5.1 KiB

import torch
from torch import nn as nn
from torch.nn import functional as F
_USE_MEM_EFFICIENT_ISH = True
if _USE_MEM_EFFICIENT_ISH:
# This version reduces memory overhead of Swish during training by
# recomputing torch.sigmoid(x) in backward instead of saving it.
class SwishAutoFn(torch.autograd.Function):
"""Swish - Described in: https://arxiv.org/abs/1710.05941
Memory efficient variant from:
https://medium.com/the-artificial-impostor/more-memory-efficient-swish-activation-function-e07c22c12a76
"""
@staticmethod
def forward(ctx, x):
result = x.mul(torch.sigmoid(x))
ctx.save_for_backward(x)
return result
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_variables[0]
sigmoid_x = torch.sigmoid(x)
return grad_output.mul(sigmoid_x * (1 + x * (1 - sigmoid_x)))
def swish(x, inplace=False):
# inplace ignored
return SwishAutoFn.apply(x)
class MishAutoFn(torch.autograd.Function):
"""Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
Experimental memory-efficient variant
"""
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
y = x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
return y
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_variables[0]
x_sigmoid = torch.sigmoid(x)
x_tanh_sp = F.softplus(x).tanh()
return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp))
def mish(x, inplace=False):
# inplace ignored
return MishAutoFn.apply(x)
class WishAutoFn(torch.autograd.Function):
"""Wish: My own mistaken creation while fiddling with Mish. Did well in some experiments.
Experimental memory-efficient variant
"""
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
y = x.mul(torch.tanh(torch.exp(x)))
return y
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_variables[0]
x_exp = x.exp()
x_tanh_exp = x_exp.tanh()
return grad_output.mul(x_tanh_exp + x * x_exp * (1 - x_tanh_exp * x_tanh_exp))
def wish(x, inplace=False):
# inplace ignored
return WishAutoFn.apply(x)
else:
def swish(x, inplace=False):
"""Swish - Described in: https://arxiv.org/abs/1710.05941
"""
return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid())
def mish(x, inplace=False):
"""Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
"""
inner = F.softplus(x).tanh()
return x.mul_(inner) if inplace else x.mul(inner)
def wish(x, inplace=False):
"""Wish: My own mistaken creation while fiddling with Mish. Did well in some experiments.
"""
inner = x.exp().tanh()
return x.mul_(inner) if inplace else x.mul(inner)
class Swish(nn.Module):
def __init__(self, inplace=False):
super(Swish, self).__init__()
self.inplace = inplace
def forward(self, x):
return swish(x, self.inplace)
class Mish(nn.Module):
def __init__(self, inplace=False):
super(Mish, self).__init__()
self.inplace = inplace
def forward(self, x):
return mish(x, self.inplace)
class Wish(nn.Module):
def __init__(self, inplace=False):
super(Wish, self).__init__()
self.inplace = inplace
def forward(self, x):
return wish(x, self.inplace)
def sigmoid(x, inplace=False):
return x.sigmoid_() if inplace else x.sigmoid()
# PyTorch has this, but not with a consistent inplace argmument interface
class Sigmoid(nn.Module):
def __init__(self, inplace=False):
super(Sigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return x.sigmoid_() if self.inplace else x.sigmoid()
def tanh(x, inplace=False):
return x.tanh_() if inplace else x.tanh()
# PyTorch has this, but not with a consistent inplace argmument interface
class Tanh(nn.Module):
def __init__(self, inplace=False):
super(Tanh, self).__init__()
self.inplace = inplace
def forward(self, x):
return x.tanh_() if self.inplace else x.tanh()
def hard_swish(x, inplace=False):
inner = F.relu6(x + 3.).div_(6.)
return x.mul_(inner) if inplace else x.mul(inner)
class HardSwish(nn.Module):
def __init__(self, inplace=False):
super(HardSwish, self).__init__()
self.inplace = inplace
def forward(self, x):
return hard_swish(x, self.inplace)
def hard_sigmoid(x, inplace=False):
if inplace:
return x.add_(3.).clamp_(0., 6.).div_(6.)
else:
return F.relu6(x + 3.) / 6.
class HardSigmoid(nn.Module):
def __init__(self, inplace=False):
super(HardSigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return hard_sigmoid(x, self.inplace)