pytorch-image-models/timm/models/inception_v4.py

331 lines
11 KiB

""" Pytorch Inception-V4 implementation
Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is
based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License)
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from .helpers import build_model_with_cfg
from .layers import create_classifier
from .registry import register_model
__all__ = ['InceptionV4']
default_cfgs = {
'inception_v4': {
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/inceptionv4-8e4777a0.pth',
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
'first_conv': 'features.0.conv', 'classifier': 'last_linear',
'label_offset': 1, # 1001 classes in pretrained weights
}
}
class BasicConv2d(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(
in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
self.bn = nn.BatchNorm2d(out_planes, eps=0.001)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class Mixed3a(nn.Module):
def __init__(self):
super(Mixed3a, self).__init__()
self.maxpool = nn.MaxPool2d(3, stride=2)
self.conv = BasicConv2d(64, 96, kernel_size=3, stride=2)
def forward(self, x):
x0 = self.maxpool(x)
x1 = self.conv(x)
out = torch.cat((x0, x1), 1)
return out
class Mixed4a(nn.Module):
def __init__(self):
super(Mixed4a, self).__init__()
self.branch0 = nn.Sequential(
BasicConv2d(160, 64, kernel_size=1, stride=1),
BasicConv2d(64, 96, kernel_size=3, stride=1)
)
self.branch1 = nn.Sequential(
BasicConv2d(160, 64, kernel_size=1, stride=1),
BasicConv2d(64, 64, kernel_size=(1, 7), stride=1, padding=(0, 3)),
BasicConv2d(64, 64, kernel_size=(7, 1), stride=1, padding=(3, 0)),
BasicConv2d(64, 96, kernel_size=(3, 3), stride=1)
)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
out = torch.cat((x0, x1), 1)
return out
class Mixed5a(nn.Module):
def __init__(self):
super(Mixed5a, self).__init__()
self.conv = BasicConv2d(192, 192, kernel_size=3, stride=2)
self.maxpool = nn.MaxPool2d(3, stride=2)
def forward(self, x):
x0 = self.conv(x)
x1 = self.maxpool(x)
out = torch.cat((x0, x1), 1)
return out
class InceptionA(nn.Module):
def __init__(self):
super(InceptionA, self).__init__()
self.branch0 = BasicConv2d(384, 96, kernel_size=1, stride=1)
self.branch1 = nn.Sequential(
BasicConv2d(384, 64, kernel_size=1, stride=1),
BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1)
)
self.branch2 = nn.Sequential(
BasicConv2d(384, 64, kernel_size=1, stride=1),
BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1),
BasicConv2d(96, 96, kernel_size=3, stride=1, padding=1)
)
self.branch3 = nn.Sequential(
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
BasicConv2d(384, 96, kernel_size=1, stride=1)
)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
x3 = self.branch3(x)
out = torch.cat((x0, x1, x2, x3), 1)
return out
class ReductionA(nn.Module):
def __init__(self):
super(ReductionA, self).__init__()
self.branch0 = BasicConv2d(384, 384, kernel_size=3, stride=2)
self.branch1 = nn.Sequential(
BasicConv2d(384, 192, kernel_size=1, stride=1),
BasicConv2d(192, 224, kernel_size=3, stride=1, padding=1),
BasicConv2d(224, 256, kernel_size=3, stride=2)
)
self.branch2 = nn.MaxPool2d(3, stride=2)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
out = torch.cat((x0, x1, x2), 1)
return out
class InceptionB(nn.Module):
def __init__(self):
super(InceptionB, self).__init__()
self.branch0 = BasicConv2d(1024, 384, kernel_size=1, stride=1)
self.branch1 = nn.Sequential(
BasicConv2d(1024, 192, kernel_size=1, stride=1),
BasicConv2d(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)),
BasicConv2d(224, 256, kernel_size=(7, 1), stride=1, padding=(3, 0))
)
self.branch2 = nn.Sequential(
BasicConv2d(1024, 192, kernel_size=1, stride=1),
BasicConv2d(192, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)),
BasicConv2d(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)),
BasicConv2d(224, 224, kernel_size=(7, 1), stride=1, padding=(3, 0)),
BasicConv2d(224, 256, kernel_size=(1, 7), stride=1, padding=(0, 3))
)
self.branch3 = nn.Sequential(
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
BasicConv2d(1024, 128, kernel_size=1, stride=1)
)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
x3 = self.branch3(x)
out = torch.cat((x0, x1, x2, x3), 1)
return out
class ReductionB(nn.Module):
def __init__(self):
super(ReductionB, self).__init__()
self.branch0 = nn.Sequential(
BasicConv2d(1024, 192, kernel_size=1, stride=1),
BasicConv2d(192, 192, kernel_size=3, stride=2)
)
self.branch1 = nn.Sequential(
BasicConv2d(1024, 256, kernel_size=1, stride=1),
BasicConv2d(256, 256, kernel_size=(1, 7), stride=1, padding=(0, 3)),
BasicConv2d(256, 320, kernel_size=(7, 1), stride=1, padding=(3, 0)),
BasicConv2d(320, 320, kernel_size=3, stride=2)
)
self.branch2 = nn.MaxPool2d(3, stride=2)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
out = torch.cat((x0, x1, x2), 1)
return out
class InceptionC(nn.Module):
def __init__(self):
super(InceptionC, self).__init__()
self.branch0 = BasicConv2d(1536, 256, kernel_size=1, stride=1)
self.branch1_0 = BasicConv2d(1536, 384, kernel_size=1, stride=1)
self.branch1_1a = BasicConv2d(384, 256, kernel_size=(1, 3), stride=1, padding=(0, 1))
self.branch1_1b = BasicConv2d(384, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))
self.branch2_0 = BasicConv2d(1536, 384, kernel_size=1, stride=1)
self.branch2_1 = BasicConv2d(384, 448, kernel_size=(3, 1), stride=1, padding=(1, 0))
self.branch2_2 = BasicConv2d(448, 512, kernel_size=(1, 3), stride=1, padding=(0, 1))
self.branch2_3a = BasicConv2d(512, 256, kernel_size=(1, 3), stride=1, padding=(0, 1))
self.branch2_3b = BasicConv2d(512, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))
self.branch3 = nn.Sequential(
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
BasicConv2d(1536, 256, kernel_size=1, stride=1)
)
def forward(self, x):
x0 = self.branch0(x)
x1_0 = self.branch1_0(x)
x1_1a = self.branch1_1a(x1_0)
x1_1b = self.branch1_1b(x1_0)
x1 = torch.cat((x1_1a, x1_1b), 1)
x2_0 = self.branch2_0(x)
x2_1 = self.branch2_1(x2_0)
x2_2 = self.branch2_2(x2_1)
x2_3a = self.branch2_3a(x2_2)
x2_3b = self.branch2_3b(x2_2)
x2 = torch.cat((x2_3a, x2_3b), 1)
x3 = self.branch3(x)
out = torch.cat((x0, x1, x2, x3), 1)
return out
class InceptionV4(nn.Module):
def __init__(self, num_classes=1000, in_chans=3, output_stride=32, drop_rate=0., global_pool='avg'):
super(InceptionV4, self).__init__()
assert output_stride == 32
self.drop_rate = drop_rate
self.num_classes = num_classes
self.num_features = 1536
self.features = nn.Sequential(
BasicConv2d(in_chans, 32, kernel_size=3, stride=2),
BasicConv2d(32, 32, kernel_size=3, stride=1),
BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1),
Mixed3a(),
Mixed4a(),
Mixed5a(),
InceptionA(),
InceptionA(),
InceptionA(),
InceptionA(),
ReductionA(), # Mixed6a
InceptionB(),
InceptionB(),
InceptionB(),
InceptionB(),
InceptionB(),
InceptionB(),
InceptionB(),
ReductionB(), # Mixed7a
InceptionC(),
InceptionC(),
InceptionC(),
)
self.feature_info = [
dict(num_chs=64, reduction=2, module='features.2'),
dict(num_chs=160, reduction=4, module='features.3'),
dict(num_chs=384, reduction=8, module='features.9'),
dict(num_chs=1024, reduction=16, module='features.17'),
dict(num_chs=1536, reduction=32, module='features.21'),
]
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^features\.[012]\.',
blocks=r'^features\.(\d+)'
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
assert not enable, 'gradient checkpointing not supported'
@torch.jit.ignore
def get_classifier(self):
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
def forward_features(self, x):
return self.features(x)
def forward_head(self, x, pre_logits: bool = False):
x = self.global_pool(x)
if self.drop_rate > 0:
x = F.dropout(x, p=self.drop_rate, training=self.training)
return x if pre_logits else self.last_linear(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_inception_v4(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
InceptionV4, variant, pretrained,
feature_cfg=dict(flatten_sequential=True),
**kwargs)
@register_model
def inception_v4(pretrained=False, **kwargs):
return _create_inception_v4('inception_v4', pretrained, **kwargs)