You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/data/distributed_sampler.py

159 lines
6.5 KiB

import math
import torch
from torch.utils.data import Sampler
import torch.distributed as dist
class OrderedDistributedSampler(Sampler):
"""Sampler that restricts data loading to a subset of the dataset.
It is especially useful in conjunction with
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
process can pass a DistributedSampler instance as a DataLoader sampler,
and load a subset of the original dataset that is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Arguments:
dataset: Dataset used for sampling.
num_replicas (optional): Number of processes participating in
distributed training.
rank (optional): Rank of the current process within num_replicas.
"""
def __init__(self, dataset, num_replicas=None, rank=None):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
def __iter__(self):
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
class VariableDistributedSampler(Sampler):
"""Sampler that distributes the dataset to each GPU according to the workload specified by the callery.
It adjusts the dataset slice and batch size.
Note: Sampling now occurs in slices of the dataset; no longer by stepping through it.
.. note::
Dataset is assumed to be of constant size.
Arguments:
dataset: Dataset used for sampling.
gpu_load: GPU workload distribution list
batch_size: Average batch size for the overall system
shuffle (bool, optional): If ``True`` (default), sampler will shuffle the
indices.
seed (int, optional): random seed used to shuffle the sampler if
:attr:`shuffle=True`. This number should be identical across all
processes in the distributed group. Default: ``0``.
"""
def __init__(self, dataset, gpu_load, batch_size, shuffle = True, seed = 0):
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
world_size = dist.get_world_size()
rank = dist.get_rank()
if (len(gpu_load) != world_size):
raise ValueError("Number of gpu_load entries not equal to world size")
if (sum(gpu_load) != world_size):
raise ValueError("Total gpu_load weights not equal to world size")
self.dataset = dataset
self.num_replicas = world_size
self.rank = rank
self.epoch = 0
self.num_samples = [None for _ in range(world_size)]
self.index_offset = [None for _ in range(world_size)]
self.batch_size = [None for _ in range(world_size)]
self.num_batches = [None for _ in range(world_size)]
# calculate the dataset slice size for each GPU
for i in range(world_size):
self.num_samples[i] = int(math.ceil(len(self.dataset) / self.num_replicas * gpu_load[i]))
self.batch_size[i] = int(math.ceil(batch_size * gpu_load[i]))
self.num_batches[i] = int(math.ceil(self.num_samples[i] / self.batch_size[i]))
for i in range(1, world_size):
if (self.num_batches[i] != self.num_batches[i-1]):
raise ValueError("Number of batches mismatch: ", self.num_batches)
# calculcate the dataset offset of each GPU slice
self.index_offset[0] = 0
for i in range(1, world_size):
self.index_offset[i] = self.index_offset[i-1] + self.num_samples[i-1]
self.total_size = sum(self.num_samples)
if (rank == 0):
print('VariableDistributedSampler: Number of samples: ', self.num_samples)
print('VariableDistributedSampler: Index offsets : ', self.index_offset)
print('VariableDistributedSampler: Batch sizes : ', self.batch_size)
print('VariableDistributedSampler: Number of batches: ', self.num_batches)
self.shuffle = shuffle
self.seed = seed
def get_batch_size(self):
return self.batch_size[self.rank]
def __iter__(self):
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
else:
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
assert len(indices) == self.total_size
# subsample
#indices = indices[self.rank:self.total_size:self.num_replicas]
indices = indices[self.index_offset[self.rank]:self.index_offset[self.rank] + self.num_samples[self.rank]]
assert len(indices) == self.num_samples[self.rank]
return iter(indices)
def __len__(self):
return self.num_samples[self.rank]
def set_epoch(self, epoch: int):
r"""
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
use a different random ordering for each epoch. Otherwise, the next iteration of this
sampler will yield the same ordering.
Args:
epoch (int): Epoch number.
"""
self.epoch = epoch