|
|
from torchbench.image_classification import ImageNet
|
|
|
from timm import create_model, list_models
|
|
|
from timm.data import resolve_data_config, create_transform
|
|
|
|
|
|
NUM_GPU = 1
|
|
|
BATCH_SIZE = 256 * NUM_GPU
|
|
|
|
|
|
|
|
|
def _attrib(paper_model_name='', paper_arxiv_id='', batch_size=BATCH_SIZE):
|
|
|
return dict(
|
|
|
paper_model_name=paper_model_name,
|
|
|
paper_arxiv_id=paper_arxiv_id,
|
|
|
batch_size=batch_size)
|
|
|
|
|
|
model_map = dict(
|
|
|
#adv_inception_v3=_attrib(paper_model_name='Adversarial Inception V3', paper_arxiv_id=),
|
|
|
#densenet121=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
|
|
|
#densenet161=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
|
|
|
#densenet169=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
|
|
|
#densenet201=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
|
|
|
dpn68=_attrib(
|
|
|
paper_model_name='DPN-68', paper_arxiv_id='1707.01629'),
|
|
|
dpn68b=_attrib(
|
|
|
paper_model_name='DPN-68b', paper_arxiv_id='1707.01629'),
|
|
|
dpn92=_attrib(
|
|
|
paper_model_name='DPN-92', paper_arxiv_id='1707.01629'),
|
|
|
dpn98=_attrib(
|
|
|
paper_model_name='DPN-98', paper_arxiv_id='1707.01629'),
|
|
|
dpn107=_attrib(
|
|
|
paper_model_name='DPN-107', paper_arxiv_id='1707.01629'),
|
|
|
dpn131=_attrib(
|
|
|
paper_model_name='DPN-131', paper_arxiv_id='1707.01629'),
|
|
|
efficientnet_b0=_attrib(
|
|
|
paper_model_name='EfficientNet-B0', paper_arxiv_id='1905.11946'),
|
|
|
efficientnet_b1=_attrib(
|
|
|
paper_model_name='EfficientNet-B1', paper_arxiv_id='1905.11946'),
|
|
|
efficientnet_b2=_attrib(
|
|
|
paper_model_name='EfficientNet-B2', paper_arxiv_id='1905.11946'),
|
|
|
#ens_adv_inception_resnet_v2=_attrib(paper_model_name=, paper_arxiv_id=),
|
|
|
fbnetc_100=_attrib(
|
|
|
paper_model_name='FBNet-C', paper_arxiv_id='1812.03443'),
|
|
|
gluon_inception_v3=_attrib(
|
|
|
paper_model_name='Inception V3', paper_arxiv_id='1512.00567'),
|
|
|
gluon_resnet18_v1b=_attrib(
|
|
|
paper_model_name='ResNet-18', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet34_v1b=_attrib(
|
|
|
paper_model_name='ResNet-34', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet50_v1b=_attrib(
|
|
|
paper_model_name='ResNet-50', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet50_v1c=_attrib(
|
|
|
paper_model_name='ResNet-50-C', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet50_v1d=_attrib(
|
|
|
paper_model_name='ResNet-50-D', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet50_v1s=_attrib(
|
|
|
paper_model_name='ResNet-50-S', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet101_v1b=_attrib(
|
|
|
paper_model_name='ResNet-101', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet101_v1c=_attrib(
|
|
|
paper_model_name='ResNet-101-C', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet101_v1d=_attrib(
|
|
|
paper_model_name='ResNet-101-D', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet101_v1s=_attrib(
|
|
|
paper_model_name='ResNet-101-S', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet152_v1b=_attrib(
|
|
|
paper_model_name='ResNet-152', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet152_v1c=_attrib(
|
|
|
paper_model_name='ResNet-152-C', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet152_v1d=_attrib(
|
|
|
paper_model_name='ResNet-152-D', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnet152_v1s=_attrib(
|
|
|
paper_model_name='ResNet-152-S', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnext50_32x4d=_attrib(
|
|
|
paper_model_name='ResNeXt-50 32x4d', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnext101_32x4d=_attrib(
|
|
|
paper_model_name='ResNeXt-101 32x4d', paper_arxiv_id='1812.01187'),
|
|
|
gluon_resnext101_64x4d=_attrib(
|
|
|
paper_model_name='ResNeXt-101 64x4d', paper_arxiv_id='1812.01187'),
|
|
|
gluon_senet154=_attrib(
|
|
|
paper_model_name='SENet-154', paper_arxiv_id='1812.01187'),
|
|
|
gluon_seresnext50_32x4d=_attrib(
|
|
|
paper_model_name='SE-ResNeXt-50 32x4d', paper_arxiv_id='1812.01187'),
|
|
|
gluon_seresnext101_32x4d=_attrib(
|
|
|
paper_model_name='SE-ResNeXt-101 32x4d', paper_arxiv_id='1812.01187'),
|
|
|
gluon_seresnext101_64x4d=_attrib(
|
|
|
paper_model_name='SE-ResNeXt-101 64x4d', paper_arxiv_id='1812.01187'),
|
|
|
gluon_xception65=_attrib(
|
|
|
paper_model_name='Modified Aligned Xception', paper_arxiv_id='1802.02611', batch_size=BATCH_SIZE//2),
|
|
|
ig_resnext101_32x8d=_attrib(
|
|
|
paper_model_name='ResNeXt-101 32×8d', paper_arxiv_id='1805.00932'),
|
|
|
ig_resnext101_32x16d=_attrib(
|
|
|
paper_model_name='ResNeXt-101 32×16d', paper_arxiv_id='1805.00932'),
|
|
|
ig_resnext101_32x32d=_attrib(
|
|
|
paper_model_name='ResNeXt-101 32×32d', paper_arxiv_id='1805.00932', batch_size=BATCH_SIZE//2),
|
|
|
ig_resnext101_32x48d=_attrib(
|
|
|
paper_model_name='ResNeXt-101 32×48d', paper_arxiv_id='1805.00932', batch_size=BATCH_SIZE//4),
|
|
|
inception_resnet_v2=_attrib(
|
|
|
paper_model_name='Inception ResNet V2', paper_arxiv_id='1602.07261'),
|
|
|
#inception_v3=dict(paper_model_name='Inception V3', paper_arxiv_id=), # same weights as torchvision
|
|
|
inception_v4=_attrib(
|
|
|
paper_model_name='Inception V4', paper_arxiv_id='1602.07261'),
|
|
|
mixnet_l=_attrib(
|
|
|
paper_model_name='MixNet-L', paper_arxiv_id='1907.09595'),
|
|
|
mixnet_m=_attrib(
|
|
|
paper_model_name='MixNet-M', paper_arxiv_id='1907.09595'),
|
|
|
mixnet_s=_attrib(
|
|
|
paper_model_name='MixNet-S', paper_arxiv_id='1907.09595'),
|
|
|
mnasnet_100=_attrib(
|
|
|
paper_model_name='MnasNet-B1', paper_arxiv_id='1807.11626'),
|
|
|
mobilenetv3_100=_attrib(
|
|
|
paper_model_name='MobileNet V3(1.0)', paper_arxiv_id='1905.02244'),
|
|
|
nasnetalarge=_attrib(
|
|
|
paper_model_name='NASNet-A Large', paper_arxiv_id='1707.07012', batch_size=BATCH_SIZE//4),
|
|
|
pnasnet5large=_attrib(
|
|
|
paper_model_name='PNASNet-5', paper_arxiv_id='1712.00559', batch_size=BATCH_SIZE//4),
|
|
|
resnet18=_attrib(
|
|
|
paper_model_name='ResNet-18', paper_arxiv_id='1812.01187'),
|
|
|
resnet26=_attrib(
|
|
|
paper_model_name='ResNet-26', paper_arxiv_id='1812.01187'),
|
|
|
resnet26d=_attrib(
|
|
|
paper_model_name='ResNet-26-D', paper_arxiv_id='1812.01187'),
|
|
|
resnet34=_attrib(
|
|
|
paper_model_name='ResNet-34', paper_arxiv_id='1812.01187'),
|
|
|
resnet50=_attrib(
|
|
|
paper_model_name='ResNet-50', paper_arxiv_id='1812.01187'),
|
|
|
#resnet101=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
|
|
|
#resnet152=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
|
|
|
resnext50_32x4d=_attrib(
|
|
|
paper_model_name='ResNeXt-50 32x4d', paper_arxiv_id='1812.01187'),
|
|
|
resnext50d_32x4d=_attrib(
|
|
|
paper_model_name='ResNeXt-50-D 32x4d', paper_arxiv_id='1812.01187'),
|
|
|
#resnext101_32x8d=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
|
|
|
semnasnet_100=_attrib(
|
|
|
paper_model_name='MnasNet-A1', paper_arxiv_id='1807.11626'),
|
|
|
senet154=_attrib(
|
|
|
paper_model_name='SENet-154', paper_arxiv_id='1709.01507'),
|
|
|
seresnet18=_attrib(
|
|
|
paper_model_name='SE-ResNet-18', paper_arxiv_id='1709.01507'),
|
|
|
seresnet34=_attrib(
|
|
|
paper_model_name='SE-ResNet-34', paper_arxiv_id='1709.01507'),
|
|
|
seresnet50=_attrib(
|
|
|
paper_model_name='SE-ResNet-50', paper_arxiv_id='1709.01507'),
|
|
|
seresnet101=_attrib(
|
|
|
paper_model_name='SE-ResNet-101', paper_arxiv_id='1709.01507'),
|
|
|
seresnet152=_attrib(
|
|
|
paper_model_name='SE-ResNet-152', paper_arxiv_id='1709.01507'),
|
|
|
seresnext26_32x4d=_attrib(
|
|
|
paper_model_name='SE-ResNeXt-26 32x4d', paper_arxiv_id='1709.01507'),
|
|
|
seresnext50_32x4d=_attrib(
|
|
|
paper_model_name='SE-ResNeXt-50 32x4d', paper_arxiv_id='1709.01507'),
|
|
|
seresnext101_32x4d=_attrib(
|
|
|
paper_model_name='SE-ResNeXt-101 32x4d', paper_arxiv_id='1709.01507'),
|
|
|
spnasnet_100=_attrib(
|
|
|
paper_model_name='Single-Path NAS', paper_arxiv_id='1904.02877'),
|
|
|
tf_efficientnet_b0=_attrib(
|
|
|
paper_model_name='EfficientNet-B0', paper_arxiv_id='1905.11946'),
|
|
|
tf_efficientnet_b1=_attrib(
|
|
|
paper_model_name='EfficientNet-B1', paper_arxiv_id='1905.11946'),
|
|
|
tf_efficientnet_b2=_attrib(
|
|
|
paper_model_name='EfficientNet-B2', paper_arxiv_id='1905.11946'),
|
|
|
tf_efficientnet_b3=_attrib(
|
|
|
paper_model_name='EfficientNet-B3', paper_arxiv_id='1905.11946', batch_size=BATCH_SIZE//2),
|
|
|
tf_efficientnet_b4=_attrib(
|
|
|
paper_model_name='EfficientNet-B4', paper_arxiv_id='1905.11946', batch_size=BATCH_SIZE//2),
|
|
|
tf_efficientnet_b5=_attrib(
|
|
|
paper_model_name='EfficientNet-B5', paper_arxiv_id='1905.11946', batch_size=BATCH_SIZE//4),
|
|
|
tf_efficientnet_b6=_attrib(
|
|
|
paper_model_name='EfficientNet-B6', paper_arxiv_id='1905.11946', batch_size=BATCH_SIZE//8),
|
|
|
tf_efficientnet_b7=_attrib(
|
|
|
paper_model_name='EfficientNet-B7', paper_arxiv_id='1905.11946', batch_size=BATCH_SIZE//8),
|
|
|
tf_inception_v3=_attrib(
|
|
|
paper_model_name='Inception V3', paper_arxiv_id='1512.00567'),
|
|
|
tf_mixnet_l=_attrib(
|
|
|
paper_model_name='MixNet-L', paper_arxiv_id='1907.09595'),
|
|
|
tf_mixnet_m=_attrib(
|
|
|
paper_model_name='MixNet-M', paper_arxiv_id='1907.09595'),
|
|
|
tf_mixnet_s=_attrib(
|
|
|
paper_model_name='MixNet-S', paper_arxiv_id='1907.09595'),
|
|
|
#tv_resnet34=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
|
|
|
#tv_resnet50=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
|
|
|
#tv_resnext50_32x4d=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
|
|
|
#wide_resnet50_2=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
|
|
|
#wide_resnet101_2=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
|
|
|
xception=_attrib(
|
|
|
paper_model_name='Xception', paper_arxiv_id='1610.02357'),
|
|
|
)
|
|
|
|
|
|
model_names = list_models(pretrained=True)
|
|
|
|
|
|
for model_name in model_names:
|
|
|
if model_name not in model_map:
|
|
|
print('Skipping %s' % model_name)
|
|
|
continue
|
|
|
|
|
|
# create model from name
|
|
|
model = create_model(model_name, pretrained=True)
|
|
|
param_count = sum([m.numel() for m in model.parameters()])
|
|
|
print('Model %s created, param count: %d' % (model_name, param_count))
|
|
|
|
|
|
# get appropriate transform for model's default pretrained config
|
|
|
data_config = resolve_data_config(dict(), model=model, verbose=True)
|
|
|
input_transform = create_transform(**data_config)
|
|
|
|
|
|
# Run the benchmark
|
|
|
ImageNet.benchmark(
|
|
|
model=model,
|
|
|
paper_model_name=model_map[model_name]['paper_model_name'],
|
|
|
paper_arxiv_id=model_map[model_name]['paper_arxiv_id'],
|
|
|
input_transform=input_transform,
|
|
|
batch_size=model_map[model_name]['batch_size'],
|
|
|
num_gpu=NUM_GPU,
|
|
|
#data_root=DATA_ROOT
|
|
|
)
|
|
|
|
|
|
|