You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
969 lines
32 KiB
969 lines
32 KiB
"""PyTorch CspNet
|
|
|
|
A PyTorch implementation of Cross Stage Partial Networks including:
|
|
* CSPResNet50
|
|
* CSPResNeXt50
|
|
* CSPDarkNet53
|
|
* and DarkNet53 for good measure
|
|
|
|
Based on paper `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929
|
|
|
|
Reference impl via darknet cfg files at https://github.com/WongKinYiu/CrossStagePartialNetworks
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
"""
|
|
import collections.abc
|
|
from dataclasses import dataclass, field, asdict
|
|
from functools import partial
|
|
from typing import Any, Callable, Dict, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
from .helpers import build_model_with_cfg, named_apply, MATCH_PREV_GROUP
|
|
from .layers import ClassifierHead, ConvNormAct, ConvNormActAa, DropPath, create_attn, create_act_layer, make_divisible
|
|
from .registry import register_model
|
|
|
|
|
|
__all__ = ['CspNet'] # model_registry will add each entrypoint fn to this
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url,
|
|
'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8),
|
|
'crop_pct': 0.887, 'interpolation': 'bilinear',
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc',
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = {
|
|
'cspresnet50': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth'),
|
|
'cspresnet50d': _cfg(url=''),
|
|
'cspresnet50w': _cfg(url=''),
|
|
'cspresnext50': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth',
|
|
),
|
|
'cspdarknet53': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'),
|
|
|
|
'darknet17': _cfg(url=''),
|
|
'darknet21': _cfg(url=''),
|
|
'sedarknet21': _cfg(url=''),
|
|
'darknet53': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknet53_256_c2ns-3aeff817.pth',
|
|
test_input_size=(3, 288, 288), test_crop_pct=1.0, interpolation='bicubic'
|
|
),
|
|
'darknetaa53': _cfg(url=''),
|
|
|
|
'cs3darknet_s': _cfg(
|
|
url=''),
|
|
'cs3darknet_m': _cfg(
|
|
url=''),
|
|
'cs3darknet_l': _cfg(
|
|
url=''),
|
|
'cs3darknet_x': _cfg(
|
|
url=''),
|
|
|
|
'cs3darknet_focus_s': _cfg(
|
|
url=''),
|
|
'cs3darknet_focus_m': _cfg(
|
|
url=''),
|
|
'cs3darknet_focus_l': _cfg(
|
|
url=''),
|
|
'cs3darknet_focus_x': _cfg(
|
|
url=''),
|
|
|
|
'cs3sedarknet_xdw': _cfg(
|
|
url=''),
|
|
}
|
|
|
|
|
|
@dataclass
|
|
class CspStemCfg:
|
|
out_chs: Union[int, Tuple[int, ...]] = 32
|
|
stride: Union[int, Tuple[int, ...]] = 2
|
|
kernel_size: int = 3
|
|
padding: Union[int, str] = ''
|
|
pool: Optional[str] = ''
|
|
|
|
|
|
def _pad_arg(x, n):
|
|
# pads an argument tuple to specified n by padding with last value
|
|
if not isinstance(x, (tuple, list)):
|
|
x = (x,)
|
|
curr_n = len(x)
|
|
pad_n = n - curr_n
|
|
if pad_n <= 0:
|
|
return x[:n]
|
|
return tuple(x + (x[-1],) * pad_n)
|
|
|
|
|
|
@dataclass
|
|
class CspStagesCfg:
|
|
depth: Tuple[int, ...] = (3, 3, 5, 2) # block depth (number of block repeats in stages)
|
|
out_chs: Tuple[int, ...] = (128, 256, 512, 1024) # number of output channels for blocks in stage
|
|
stride: Union[int, Tuple[int, ...]] = 2 # stride of stage
|
|
groups: Union[int, Tuple[int, ...]] = 1 # num kxk conv groups
|
|
block_ratio: Union[float, Tuple[float, ...]] = 1.0
|
|
bottle_ratio: Union[float, Tuple[float, ...]] = 1. # bottleneck-ratio of blocks in stage
|
|
avg_down: Union[bool, Tuple[bool, ...]] = False
|
|
attn_layer: Optional[Union[str, Tuple[str, ...]]] = None
|
|
stage_type: Union[str, Tuple[str]] = 'csp' # stage type ('csp', 'cs2', 'dark')
|
|
block_type: Union[str, Tuple[str]] = 'bottle' # blocks type for stages ('bottle', 'dark')
|
|
|
|
# cross-stage only
|
|
expand_ratio: Union[float, Tuple[float, ...]] = 1.0
|
|
cross_linear: Union[bool, Tuple[bool, ...]] = False
|
|
down_growth: Union[bool, Tuple[bool, ...]] = False
|
|
|
|
def __post_init__(self):
|
|
n = len(self.depth)
|
|
assert len(self.out_chs) == n
|
|
self.stride = _pad_arg(self.stride, n)
|
|
self.groups = _pad_arg(self.groups, n)
|
|
self.block_ratio = _pad_arg(self.block_ratio, n)
|
|
self.bottle_ratio = _pad_arg(self.bottle_ratio, n)
|
|
self.avg_down = _pad_arg(self.avg_down, n)
|
|
self.attn_layer = _pad_arg(self.attn_layer, n)
|
|
self.stage_type = _pad_arg(self.stage_type, n)
|
|
self.block_type = _pad_arg(self.block_type, n)
|
|
|
|
self.expand_ratio = _pad_arg(self.expand_ratio, n)
|
|
self.cross_linear = _pad_arg(self.cross_linear, n)
|
|
self.down_growth = _pad_arg(self.down_growth, n)
|
|
|
|
|
|
@dataclass
|
|
class CspModelCfg:
|
|
stem: CspStemCfg
|
|
stages: CspStagesCfg
|
|
zero_init_last: bool = True # zero init last weight (usually bn) in residual path
|
|
act_layer: str = 'relu'
|
|
norm_layer: str = 'batchnorm'
|
|
aa_layer: Optional[str] = None # FIXME support string factory for this
|
|
|
|
|
|
def _cs3darknet_cfg(width_multiplier=1.0, depth_multiplier=1.0, avg_down=False, act_layer='silu', focus=False):
|
|
if focus:
|
|
stem_cfg = CspStemCfg(
|
|
out_chs=make_divisible(64 * width_multiplier),
|
|
kernel_size=6, stride=2, padding=2, pool='')
|
|
else:
|
|
stem_cfg = CspStemCfg(
|
|
out_chs=tuple([make_divisible(c * width_multiplier) for c in (32, 64)]),
|
|
kernel_size=3, stride=2, pool='')
|
|
return CspModelCfg(
|
|
stem=stem_cfg,
|
|
stages=CspStagesCfg(
|
|
out_chs=tuple([make_divisible(c * width_multiplier) for c in (128, 256, 512, 1024)]),
|
|
depth=tuple([int(d * depth_multiplier) for d in (3, 6, 9, 3)]),
|
|
stride=2,
|
|
bottle_ratio=1.,
|
|
block_ratio=0.5,
|
|
avg_down=avg_down,
|
|
stage_type='cs3',
|
|
block_type='dark',
|
|
),
|
|
act_layer=act_layer,
|
|
)
|
|
|
|
|
|
model_cfgs = dict(
|
|
cspresnet50=CspModelCfg(
|
|
stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'),
|
|
stages=CspStagesCfg(
|
|
depth=(3, 3, 5, 2),
|
|
out_chs=(128, 256, 512, 1024),
|
|
stride=(1, 2),
|
|
expand_ratio=2.,
|
|
bottle_ratio=0.5,
|
|
cross_linear=True,
|
|
),
|
|
),
|
|
cspresnet50d=CspModelCfg(
|
|
stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'),
|
|
stages=CspStagesCfg(
|
|
depth=(3, 3, 5, 2),
|
|
out_chs=(128, 256, 512, 1024),
|
|
stride=(1,) + (2,),
|
|
expand_ratio=2.,
|
|
bottle_ratio=0.5,
|
|
block_ratio=1.,
|
|
cross_linear=True,
|
|
)
|
|
),
|
|
cspresnet50w=CspModelCfg(
|
|
stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'),
|
|
stages=CspStagesCfg(
|
|
depth=(3, 3, 5, 2),
|
|
out_chs=(256, 512, 1024, 2048),
|
|
stride=(1,) + (2,),
|
|
expand_ratio=1.,
|
|
bottle_ratio=0.25,
|
|
block_ratio=0.5,
|
|
cross_linear=True,
|
|
)
|
|
),
|
|
cspresnext50=CspModelCfg(
|
|
stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'),
|
|
stages=CspStagesCfg(
|
|
depth=(3, 3, 5, 2),
|
|
out_chs=(256, 512, 1024, 2048),
|
|
stride=(1,) + (2,),
|
|
groups=32,
|
|
expand_ratio=1.,
|
|
bottle_ratio=1.,
|
|
block_ratio=0.5,
|
|
cross_linear=True,
|
|
)
|
|
),
|
|
cspdarknet53=CspModelCfg(
|
|
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
|
|
stages=CspStagesCfg(
|
|
depth=(1, 2, 8, 8, 4),
|
|
out_chs=(64, 128, 256, 512, 1024),
|
|
stride=2,
|
|
expand_ratio=(2.,) + (1.,),
|
|
bottle_ratio=(0.5,) + (1.,),
|
|
block_ratio=(1.,) + (0.5,),
|
|
down_growth=True,
|
|
block_type='dark',
|
|
),
|
|
act_layer='leaky_relu',
|
|
),
|
|
darknet17=CspModelCfg(
|
|
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
|
|
stages=CspStagesCfg(
|
|
depth=(1,) * 5,
|
|
out_chs=(64, 128, 256, 512, 1024),
|
|
stride=(2,),
|
|
bottle_ratio=(0.5,),
|
|
block_ratio=(1.,),
|
|
stage_type='dark',
|
|
block_type='dark',
|
|
),
|
|
act_layer='leaky_relu',
|
|
),
|
|
darknet21=CspModelCfg(
|
|
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
|
|
stages=CspStagesCfg(
|
|
depth=(1, 1, 1, 2, 2),
|
|
out_chs=(64, 128, 256, 512, 1024),
|
|
stride=(2,),
|
|
bottle_ratio=(0.5,),
|
|
block_ratio=(1.,),
|
|
stage_type='dark',
|
|
block_type='dark',
|
|
|
|
),
|
|
act_layer='leaky_relu',
|
|
),
|
|
sedarknet21=CspModelCfg(
|
|
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
|
|
stages=CspStagesCfg(
|
|
depth=(1, 1, 1, 2, 2),
|
|
out_chs=(64, 128, 256, 512, 1024),
|
|
stride=2,
|
|
bottle_ratio=0.5,
|
|
block_ratio=1.,
|
|
attn_layer='se',
|
|
stage_type='dark',
|
|
block_type='dark',
|
|
|
|
),
|
|
act_layer='leaky_relu',
|
|
),
|
|
darknet53=CspModelCfg(
|
|
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
|
|
stages=CspStagesCfg(
|
|
depth=(1, 2, 8, 8, 4),
|
|
out_chs=(64, 128, 256, 512, 1024),
|
|
stride=2,
|
|
bottle_ratio=0.5,
|
|
block_ratio=1.,
|
|
stage_type='dark',
|
|
block_type='dark',
|
|
),
|
|
act_layer='leaky_relu',
|
|
),
|
|
darknetaa53=CspModelCfg(
|
|
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
|
|
stages=CspStagesCfg(
|
|
depth=(1, 2, 8, 8, 4),
|
|
out_chs=(64, 128, 256, 512, 1024),
|
|
stride=2,
|
|
bottle_ratio=0.5,
|
|
block_ratio=1.,
|
|
avg_down=True,
|
|
stage_type='dark',
|
|
block_type='dark',
|
|
),
|
|
act_layer='leaky_relu',
|
|
),
|
|
|
|
cs3darknet_s=_cs3darknet_cfg(width_multiplier=0.5, depth_multiplier=0.5),
|
|
cs3darknet_m=_cs3darknet_cfg(width_multiplier=0.75, depth_multiplier=0.67),
|
|
cs3darknet_l=_cs3darknet_cfg(),
|
|
cs3darknet_x=_cs3darknet_cfg(width_multiplier=1.25, depth_multiplier=1.33),
|
|
|
|
cs3darknet_focus_s=_cs3darknet_cfg(width_multiplier=0.5, depth_multiplier=0.5, focus=True),
|
|
cs3darknet_focus_m=_cs3darknet_cfg(width_multiplier=0.75, depth_multiplier=0.67, focus=True),
|
|
cs3darknet_focus_l=_cs3darknet_cfg(focus=True),
|
|
cs3darknet_focus_x=_cs3darknet_cfg(width_multiplier=1.25, depth_multiplier=1.33, focus=True),
|
|
|
|
cs3sedarknet_xdw=CspModelCfg(
|
|
stem=CspStemCfg(out_chs=(32, 64), kernel_size=3, stride=2, pool=''),
|
|
stages=CspStagesCfg(
|
|
depth=(3, 6, 12, 4),
|
|
out_chs=(256, 512, 1024, 2048),
|
|
stride=2,
|
|
groups=(1, 1, 256, 512),
|
|
bottle_ratio=0.5,
|
|
block_ratio=0.5,
|
|
attn_layer='se',
|
|
),
|
|
),
|
|
)
|
|
|
|
|
|
class BottleneckBlock(nn.Module):
|
|
""" ResNe(X)t Bottleneck Block
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_chs,
|
|
out_chs,
|
|
dilation=1,
|
|
bottle_ratio=0.25,
|
|
groups=1,
|
|
act_layer=nn.ReLU,
|
|
norm_layer=nn.BatchNorm2d,
|
|
attn_last=False,
|
|
attn_layer=None,
|
|
aa_layer=None,
|
|
drop_block=None,
|
|
drop_path=0.
|
|
):
|
|
super(BottleneckBlock, self).__init__()
|
|
mid_chs = int(round(out_chs * bottle_ratio))
|
|
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
|
|
|
|
self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs)
|
|
self.conv2 = ConvNormActAa(
|
|
mid_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups,
|
|
aa_layer=aa_layer, drop_layer=drop_block, **ckwargs)
|
|
self.attn2 = create_attn(attn_layer, channels=mid_chs) if not attn_last else None
|
|
self.conv3 = ConvNormAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs)
|
|
self.attn3 = create_attn(attn_layer, channels=out_chs) if attn_last else None
|
|
self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()
|
|
self.act3 = create_act_layer(act_layer)
|
|
|
|
def zero_init_last(self):
|
|
nn.init.zeros_(self.conv3.bn.weight)
|
|
|
|
def forward(self, x):
|
|
shortcut = x
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
if self.attn2 is not None:
|
|
x = self.attn2(x)
|
|
x = self.conv3(x)
|
|
if self.attn3 is not None:
|
|
x = self.attn3(x)
|
|
x = self.drop_path(x) + shortcut
|
|
# FIXME partial shortcut needed if first block handled as per original, not used for my current impl
|
|
#x[:, :shortcut.size(1)] += shortcut
|
|
x = self.act3(x)
|
|
return x
|
|
|
|
|
|
class DarkBlock(nn.Module):
|
|
""" DarkNet Block
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_chs,
|
|
out_chs,
|
|
dilation=1,
|
|
bottle_ratio=0.5,
|
|
groups=1,
|
|
act_layer=nn.ReLU,
|
|
norm_layer=nn.BatchNorm2d,
|
|
attn_layer=None,
|
|
aa_layer=None,
|
|
drop_block=None,
|
|
drop_path=0.
|
|
):
|
|
super(DarkBlock, self).__init__()
|
|
mid_chs = int(round(out_chs * bottle_ratio))
|
|
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
|
|
self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs)
|
|
self.conv2 = ConvNormActAa(
|
|
mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups,
|
|
aa_layer=aa_layer, drop_layer=drop_block, **ckwargs)
|
|
self.attn = create_attn(attn_layer, channels=out_chs, act_layer=act_layer)
|
|
self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()
|
|
|
|
def zero_init_last(self):
|
|
nn.init.zeros_(self.conv2.bn.weight)
|
|
|
|
def forward(self, x):
|
|
shortcut = x
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
if self.attn is not None:
|
|
x = self.attn(x)
|
|
x = self.drop_path(x) + shortcut
|
|
return x
|
|
|
|
|
|
class CrossStage(nn.Module):
|
|
"""Cross Stage."""
|
|
def __init__(
|
|
self,
|
|
in_chs,
|
|
out_chs,
|
|
stride,
|
|
dilation,
|
|
depth,
|
|
block_ratio=1.,
|
|
bottle_ratio=1.,
|
|
expand_ratio=1.,
|
|
groups=1,
|
|
first_dilation=None,
|
|
avg_down=False,
|
|
down_growth=False,
|
|
cross_linear=False,
|
|
block_dpr=None,
|
|
block_fn=BottleneckBlock,
|
|
**block_kwargs
|
|
):
|
|
super(CrossStage, self).__init__()
|
|
first_dilation = first_dilation or dilation
|
|
down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels
|
|
self.expand_chs = exp_chs = int(round(out_chs * expand_ratio))
|
|
block_out_chs = int(round(out_chs * block_ratio))
|
|
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
|
|
|
|
if stride != 1 or first_dilation != dilation:
|
|
if avg_down:
|
|
self.conv_down = nn.Sequential(
|
|
nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling
|
|
ConvNormActAa(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)
|
|
)
|
|
else:
|
|
self.conv_down = ConvNormActAa(
|
|
in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
|
|
aa_layer=block_kwargs.get('aa_layer', None), **conv_kwargs)
|
|
prev_chs = down_chs
|
|
else:
|
|
self.conv_down = nn.Identity()
|
|
prev_chs = in_chs
|
|
|
|
# FIXME this 1x1 expansion is pushed down into the cross and block paths in the darknet cfgs. Also,
|
|
# there is also special case for the first stage for some of the model that results in uneven split
|
|
# across the two paths. I did it this way for simplicity for now.
|
|
self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs)
|
|
prev_chs = exp_chs // 2 # output of conv_exp is always split in two
|
|
|
|
self.blocks = nn.Sequential()
|
|
for i in range(depth):
|
|
self.blocks.add_module(str(i), block_fn(
|
|
in_chs=prev_chs,
|
|
out_chs=block_out_chs,
|
|
dilation=dilation,
|
|
bottle_ratio=bottle_ratio,
|
|
groups=groups,
|
|
drop_path=block_dpr[i] if block_dpr is not None else 0.,
|
|
**block_kwargs
|
|
))
|
|
prev_chs = block_out_chs
|
|
|
|
# transition convs
|
|
self.conv_transition_b = ConvNormAct(prev_chs, exp_chs // 2, kernel_size=1, **conv_kwargs)
|
|
self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs)
|
|
|
|
def forward(self, x):
|
|
x = self.conv_down(x)
|
|
x = self.conv_exp(x)
|
|
xs, xb = x.split(self.expand_chs // 2, dim=1)
|
|
xb = self.blocks(xb)
|
|
xb = self.conv_transition_b(xb).contiguous()
|
|
out = self.conv_transition(torch.cat([xs, xb], dim=1))
|
|
return out
|
|
|
|
|
|
class CrossStage3(nn.Module):
|
|
"""Cross Stage 3.
|
|
Similar to CrossStage, but with only one transition conv for the output.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
in_chs,
|
|
out_chs,
|
|
stride,
|
|
dilation,
|
|
depth,
|
|
block_ratio=1.,
|
|
bottle_ratio=1.,
|
|
expand_ratio=1.,
|
|
groups=1,
|
|
first_dilation=None,
|
|
avg_down=False,
|
|
down_growth=False,
|
|
cross_linear=False,
|
|
block_dpr=None,
|
|
block_fn=BottleneckBlock,
|
|
**block_kwargs
|
|
):
|
|
super(CrossStage3, self).__init__()
|
|
first_dilation = first_dilation or dilation
|
|
down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels
|
|
self.expand_chs = exp_chs = int(round(out_chs * expand_ratio))
|
|
block_out_chs = int(round(out_chs * block_ratio))
|
|
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
|
|
|
|
if stride != 1 or first_dilation != dilation:
|
|
if avg_down:
|
|
self.conv_down = nn.Sequential(
|
|
nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling
|
|
ConvNormActAa(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)
|
|
)
|
|
else:
|
|
self.conv_down = ConvNormActAa(
|
|
in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
|
|
aa_layer=block_kwargs.get('aa_layer', None), **conv_kwargs)
|
|
prev_chs = down_chs
|
|
else:
|
|
self.conv_down = None
|
|
prev_chs = in_chs
|
|
|
|
# expansion conv
|
|
self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs)
|
|
prev_chs = exp_chs // 2 # expanded output is split in 2 for blocks and cross stage
|
|
|
|
self.blocks = nn.Sequential()
|
|
for i in range(depth):
|
|
self.blocks.add_module(str(i), block_fn(
|
|
in_chs=prev_chs,
|
|
out_chs=block_out_chs,
|
|
dilation=dilation,
|
|
bottle_ratio=bottle_ratio,
|
|
groups=groups,
|
|
drop_path=block_dpr[i] if block_dpr is not None else 0.,
|
|
**block_kwargs
|
|
))
|
|
prev_chs = block_out_chs
|
|
|
|
# transition convs
|
|
self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs)
|
|
|
|
def forward(self, x):
|
|
x = self.conv_down(x)
|
|
x = self.conv_exp(x)
|
|
x1, x2 = x.split(self.expand_chs // 2, dim=1)
|
|
x1 = self.blocks(x1)
|
|
out = self.conv_transition(torch.cat([x1, x2], dim=1))
|
|
return out
|
|
|
|
|
|
class DarkStage(nn.Module):
|
|
"""DarkNet stage."""
|
|
|
|
def __init__(
|
|
self,
|
|
in_chs,
|
|
out_chs,
|
|
stride,
|
|
dilation,
|
|
depth,
|
|
block_ratio=1.,
|
|
bottle_ratio=1.,
|
|
groups=1,
|
|
first_dilation=None,
|
|
avg_down=False,
|
|
block_fn=BottleneckBlock,
|
|
block_dpr=None,
|
|
**block_kwargs
|
|
):
|
|
super(DarkStage, self).__init__()
|
|
first_dilation = first_dilation or dilation
|
|
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
|
|
|
|
if avg_down:
|
|
self.conv_down = nn.Sequential(
|
|
nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling
|
|
ConvNormActAa(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)
|
|
)
|
|
else:
|
|
self.conv_down = ConvNormActAa(
|
|
in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
|
|
aa_layer=block_kwargs.get('aa_layer', None), **conv_kwargs)
|
|
|
|
prev_chs = out_chs
|
|
block_out_chs = int(round(out_chs * block_ratio))
|
|
self.blocks = nn.Sequential()
|
|
for i in range(depth):
|
|
self.blocks.add_module(str(i), block_fn(
|
|
in_chs=prev_chs,
|
|
out_chs=block_out_chs,
|
|
dilation=dilation,
|
|
bottle_ratio=bottle_ratio,
|
|
groups=groups,
|
|
drop_path=block_dpr[i] if block_dpr is not None else 0.,
|
|
**block_kwargs
|
|
))
|
|
prev_chs = block_out_chs
|
|
|
|
def forward(self, x):
|
|
x = self.conv_down(x)
|
|
x = self.blocks(x)
|
|
return x
|
|
|
|
|
|
def create_csp_stem(
|
|
in_chans=3,
|
|
out_chs=32,
|
|
kernel_size=3,
|
|
stride=2,
|
|
pool='',
|
|
padding='',
|
|
act_layer=nn.ReLU,
|
|
norm_layer=nn.BatchNorm2d,
|
|
aa_layer=None
|
|
):
|
|
stem = nn.Sequential()
|
|
feature_info = []
|
|
if not isinstance(out_chs, (tuple, list)):
|
|
out_chs = [out_chs]
|
|
stem_depth = len(out_chs)
|
|
assert stem_depth
|
|
assert stride in (1, 2, 4)
|
|
prev_feat = None
|
|
prev_chs = in_chans
|
|
last_idx = stem_depth - 1
|
|
stem_stride = 1
|
|
for i, chs in enumerate(out_chs):
|
|
conv_name = f'conv{i + 1}'
|
|
conv_stride = 2 if (i == 0 and stride > 1) or (i == last_idx and stride > 2 and not pool) else 1
|
|
if conv_stride > 1 and prev_feat is not None:
|
|
feature_info.append(prev_feat)
|
|
stem.add_module(conv_name, ConvNormAct(
|
|
prev_chs, chs, kernel_size,
|
|
stride=conv_stride,
|
|
padding=padding if i == 0 else '',
|
|
act_layer=act_layer,
|
|
norm_layer=norm_layer
|
|
))
|
|
stem_stride *= conv_stride
|
|
prev_chs = chs
|
|
prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', conv_name]))
|
|
if pool:
|
|
assert stride > 2
|
|
if prev_feat is not None:
|
|
feature_info.append(prev_feat)
|
|
if aa_layer is not None:
|
|
stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=1, padding=1))
|
|
stem.add_module('aa', aa_layer(channels=prev_chs, stride=2))
|
|
pool_name = 'aa'
|
|
else:
|
|
stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
|
|
pool_name = 'pool'
|
|
stem_stride *= 2
|
|
prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', pool_name]))
|
|
feature_info.append(prev_feat)
|
|
return stem, feature_info
|
|
|
|
|
|
def _get_stage_fn(stage_type: str, stage_args):
|
|
assert stage_type in ('dark', 'csp', 'cs3')
|
|
if stage_type == 'dark':
|
|
stage_args.pop('expand_ratio', None)
|
|
stage_args.pop('cross_linear', None)
|
|
stage_args.pop('down_growth', None)
|
|
stage_fn = DarkStage
|
|
elif stage_type == 'csp':
|
|
stage_fn = CrossStage
|
|
else:
|
|
stage_fn = CrossStage3
|
|
return stage_fn, stage_args
|
|
|
|
|
|
def _get_block_fn(stage_type: str, stage_args):
|
|
assert stage_type in ('dark', 'bottle')
|
|
if stage_type == 'dark':
|
|
return DarkBlock, stage_args
|
|
else:
|
|
return BottleneckBlock, stage_args
|
|
|
|
|
|
def create_csp_stages(
|
|
cfg: CspModelCfg,
|
|
drop_path_rate: float,
|
|
output_stride: int,
|
|
stem_feat: Dict[str, Any]
|
|
):
|
|
cfg_dict = asdict(cfg.stages)
|
|
num_stages = len(cfg.stages.depth)
|
|
cfg_dict['block_dpr'] = [None] * num_stages if not drop_path_rate else \
|
|
[x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.stages.depth)).split(cfg.stages.depth)]
|
|
stage_args = [dict(zip(cfg_dict.keys(), values)) for values in zip(*cfg_dict.values())]
|
|
block_kwargs = dict(
|
|
act_layer=cfg.act_layer,
|
|
norm_layer=cfg.norm_layer,
|
|
aa_layer=cfg.aa_layer
|
|
)
|
|
|
|
dilation = 1
|
|
net_stride = stem_feat['reduction']
|
|
prev_chs = stem_feat['num_chs']
|
|
prev_feat = stem_feat
|
|
feature_info = []
|
|
stages = []
|
|
for stage_idx, stage_args in enumerate(stage_args):
|
|
stage_fn, stage_args = _get_stage_fn(stage_args.pop('stage_type'), stage_args)
|
|
block_fn, stage_args = _get_block_fn(stage_args.pop('block_type'), stage_args)
|
|
stride = stage_args.pop('stride')
|
|
if stride != 1 and prev_feat:
|
|
feature_info.append(prev_feat)
|
|
if net_stride >= output_stride and stride > 1:
|
|
dilation *= stride
|
|
stride = 1
|
|
net_stride *= stride
|
|
first_dilation = 1 if dilation in (1, 2) else 2
|
|
|
|
stages += [stage_fn(
|
|
prev_chs,
|
|
**stage_args,
|
|
stride=stride,
|
|
first_dilation=first_dilation,
|
|
dilation=dilation,
|
|
block_fn=block_fn,
|
|
**block_kwargs,
|
|
)]
|
|
prev_chs = stage_args['out_chs']
|
|
prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}')
|
|
|
|
feature_info.append(prev_feat)
|
|
return nn.Sequential(*stages), feature_info
|
|
|
|
|
|
class CspNet(nn.Module):
|
|
"""Cross Stage Partial base model.
|
|
|
|
Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929
|
|
Ref Impl: https://github.com/WongKinYiu/CrossStagePartialNetworks
|
|
|
|
NOTE: There are differences in the way I handle the 1x1 'expansion' conv in this impl vs the
|
|
darknet impl. I did it this way for simplicity and less special cases.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
cfg: CspModelCfg,
|
|
in_chans=3,
|
|
num_classes=1000,
|
|
output_stride=32,
|
|
global_pool='avg',
|
|
drop_rate=0.,
|
|
drop_path_rate=0.,
|
|
zero_init_last=True
|
|
):
|
|
super().__init__()
|
|
self.num_classes = num_classes
|
|
self.drop_rate = drop_rate
|
|
assert output_stride in (8, 16, 32)
|
|
layer_args = dict(
|
|
act_layer=cfg.act_layer,
|
|
norm_layer=cfg.norm_layer,
|
|
aa_layer=cfg.aa_layer
|
|
)
|
|
self.feature_info = []
|
|
|
|
# Construct the stem
|
|
self.stem, stem_feat_info = create_csp_stem(in_chans, **asdict(cfg.stem), **layer_args)
|
|
self.feature_info.extend(stem_feat_info[:-1])
|
|
|
|
# Construct the stages
|
|
self.stages, stage_feat_info = create_csp_stages(
|
|
cfg,
|
|
drop_path_rate=drop_path_rate,
|
|
output_stride=output_stride,
|
|
stem_feat=stem_feat_info[-1],
|
|
)
|
|
prev_chs = stage_feat_info[-1]['num_chs']
|
|
self.feature_info.extend(stage_feat_info)
|
|
|
|
# Construct the head
|
|
self.num_features = prev_chs
|
|
self.head = ClassifierHead(
|
|
in_chs=prev_chs, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
|
|
|
named_apply(partial(_init_weights, zero_init_last=zero_init_last), self)
|
|
|
|
@torch.jit.ignore
|
|
def group_matcher(self, coarse=False):
|
|
matcher = dict(
|
|
stem=r'^stem',
|
|
blocks=r'^stages\.(\d+)' if coarse else [
|
|
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
|
|
(r'^stages\.(\d+)\..*transition', MATCH_PREV_GROUP), # map to last block in stage
|
|
(r'^stages\.(\d+)', (0,)),
|
|
]
|
|
)
|
|
return matcher
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
assert not enable, 'gradient checkpointing not supported'
|
|
|
|
@torch.jit.ignore
|
|
def get_classifier(self):
|
|
return self.head.fc
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
|
|
|
|
def forward_features(self, x):
|
|
x = self.stem(x)
|
|
x = self.stages(x)
|
|
return x
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
return self.head(x, pre_logits=pre_logits)
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
|
|
def _init_weights(module, name, zero_init_last=False):
|
|
if isinstance(module, nn.Conv2d):
|
|
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
|
|
if module.bias is not None:
|
|
nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Linear):
|
|
nn.init.normal_(module.weight, mean=0.0, std=0.01)
|
|
if module.bias is not None:
|
|
nn.init.zeros_(module.bias)
|
|
elif zero_init_last and hasattr(module, 'zero_init_last'):
|
|
module.zero_init_last()
|
|
|
|
|
|
def _create_cspnet(variant, pretrained=False, **kwargs):
|
|
if variant.startswith('darknet') or variant.startswith('cspdarknet'):
|
|
# NOTE: DarkNet is one of few models with stride==1 features w/ 6 out_indices [0..5]
|
|
default_out_indices = (0, 1, 2, 3, 4, 5)
|
|
else:
|
|
default_out_indices = (0, 1, 2, 3, 4)
|
|
out_indices = kwargs.pop('out_indices', default_out_indices)
|
|
return build_model_with_cfg(
|
|
CspNet, variant, pretrained,
|
|
model_cfg=model_cfgs[variant],
|
|
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
|
**kwargs)
|
|
|
|
|
|
@register_model
|
|
def cspresnet50(pretrained=False, **kwargs):
|
|
return _create_cspnet('cspresnet50', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cspresnet50d(pretrained=False, **kwargs):
|
|
return _create_cspnet('cspresnet50d', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cspresnet50w(pretrained=False, **kwargs):
|
|
return _create_cspnet('cspresnet50w', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cspresnext50(pretrained=False, **kwargs):
|
|
return _create_cspnet('cspresnext50', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cspdarknet53(pretrained=False, **kwargs):
|
|
return _create_cspnet('cspdarknet53', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def darknet17(pretrained=False, **kwargs):
|
|
return _create_cspnet('darknet17', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def darknet21(pretrained=False, **kwargs):
|
|
return _create_cspnet('darknet21', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def sedarknet21(pretrained=False, **kwargs):
|
|
return _create_cspnet('sedarknet21', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def darknet53(pretrained=False, **kwargs):
|
|
return _create_cspnet('darknet53', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def darknetaa53(pretrained=False, **kwargs):
|
|
return _create_cspnet('darknetaa53', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cs3darknet_s(pretrained=False, **kwargs):
|
|
return _create_cspnet('cs3darknet_s', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cs3darknet_m(pretrained=False, **kwargs):
|
|
return _create_cspnet('cs3darknet_m', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cs3darknet_l(pretrained=False, **kwargs):
|
|
return _create_cspnet('cs3darknet_l', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cs3darknet_x(pretrained=False, **kwargs):
|
|
return _create_cspnet('cs3darknet_x', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cs3darknet_focus_s(pretrained=False, **kwargs):
|
|
return _create_cspnet('cs3darknet_focus_s', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cs3darknet_focus_m(pretrained=False, **kwargs):
|
|
return _create_cspnet('cs3darknet_focus_m', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cs3darknet_focus_l(pretrained=False, **kwargs):
|
|
return _create_cspnet('cs3darknet_focus_l', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cs3darknet_focus_x(pretrained=False, **kwargs):
|
|
return _create_cspnet('cs3darknet_focus_x', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def cs3sedarknet_xdw(pretrained=False, **kwargs):
|
|
return _create_cspnet('cs3sedarknet_xdw', pretrained=pretrained, **kwargs)
|