81 lines
2.4 KiB
81 lines
2.4 KiB
""" Dataset reader that wraps Hugging Face datasets
|
|
|
|
Hacked together by / Copyright 2022 Ross Wightman
|
|
"""
|
|
import io
|
|
import math
|
|
import torch
|
|
import torch.distributed as dist
|
|
from PIL import Image
|
|
|
|
try:
|
|
import datasets
|
|
except ImportError as e:
|
|
print("Please install Hugging Face datasets package `pip install datasets`.")
|
|
exit(1)
|
|
from .class_map import load_class_map
|
|
from .reader import Reader
|
|
|
|
|
|
def get_class_labels(info, label_key='label'):
|
|
if 'label' not in info.features:
|
|
return {}
|
|
class_label = info.features[label_key]
|
|
class_to_idx = {n: class_label.str2int(n) for n in class_label.names}
|
|
return class_to_idx
|
|
|
|
|
|
class ReaderHfds(Reader):
|
|
|
|
def __init__(
|
|
self,
|
|
root,
|
|
name,
|
|
split='train',
|
|
class_map=None,
|
|
label_key='label',
|
|
download=False,
|
|
):
|
|
"""
|
|
"""
|
|
super().__init__()
|
|
self.root = root
|
|
self.split = split
|
|
self.dataset = datasets.load_dataset(
|
|
name, # 'name' maps to path arg in hf datasets
|
|
split=split,
|
|
cache_dir=self.root, # timm doesn't expect hidden cache dir for datasets, specify a path
|
|
)
|
|
# leave decode for caller, plus we want easy access to original path names...
|
|
self.dataset = self.dataset.cast_column('image', datasets.Image(decode=False))
|
|
|
|
self.label_key = label_key
|
|
self.remap_class = False
|
|
if class_map:
|
|
self.class_to_idx = load_class_map(class_map)
|
|
self.remap_class = True
|
|
else:
|
|
self.class_to_idx = get_class_labels(self.dataset.info, self.label_key)
|
|
self.split_info = self.dataset.info.splits[split]
|
|
self.num_samples = self.split_info.num_examples
|
|
|
|
def __getitem__(self, index):
|
|
item = self.dataset[index]
|
|
image = item['image']
|
|
if 'bytes' in image and image['bytes']:
|
|
image = io.BytesIO(image['bytes'])
|
|
else:
|
|
assert 'path' in image and image['path']
|
|
image = open(image['path'], 'rb')
|
|
label = item[self.label_key]
|
|
if self.remap_class:
|
|
label = self.class_to_idx[label]
|
|
return image, label
|
|
|
|
def __len__(self):
|
|
return len(self.dataset)
|
|
|
|
def _filename(self, index, basename=False, absolute=False):
|
|
item = self.dataset[index]
|
|
return item['image']['path']
|