You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
701 lines
28 KiB
701 lines
28 KiB
"""PyTorch ResNet
|
|
|
|
This started as a copy of https://github.com/pytorch/vision 'resnet.py' (BSD-3-Clause) with
|
|
additional dropout and dynamic global avg/max pool.
|
|
|
|
ResNeXt, SE-ResNeXt, SENet, and MXNet Gluon stem/downsample variants added by Ross Wightman
|
|
"""
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from .registry import register_model
|
|
from .helpers import load_pretrained
|
|
from .adaptive_avgmax_pool import SelectAdaptivePool2d
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
|
|
__all__ = ['ResNet'] # model_registry will add each entrypoint fn to this
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url,
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'first_conv': 'conv1', 'classifier': 'fc',
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = {
|
|
'resnet18': _cfg(url='https://download.pytorch.org/models/resnet18-5c106cde.pth'),
|
|
'resnet34': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth'),
|
|
'resnet26': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth',
|
|
interpolation='bicubic'),
|
|
'resnet26d': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth',
|
|
interpolation='bicubic'),
|
|
'resnet50': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/rw_resnet50-86acaeed.pth',
|
|
interpolation='bicubic'),
|
|
'resnet50d': _cfg(
|
|
url='',
|
|
interpolation='bicubic'),
|
|
'resnet101': _cfg(url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'),
|
|
'resnet152': _cfg(url='https://download.pytorch.org/models/resnet152-b121ed2d.pth'),
|
|
'tv_resnet34': _cfg(url='https://download.pytorch.org/models/resnet34-333f7ec4.pth'),
|
|
'tv_resnet50': _cfg(url='https://download.pytorch.org/models/resnet50-19c8e357.pth'),
|
|
'wide_resnet50_2': _cfg(url='https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth'),
|
|
'wide_resnet101_2': _cfg(url='https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth'),
|
|
'resnext50_32x4d': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50_32x4d-068914d1.pth',
|
|
interpolation='bicubic'),
|
|
'resnext50d_32x4d': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50d_32x4d-103e99f8.pth',
|
|
interpolation='bicubic'),
|
|
'resnext101_32x4d': _cfg(url=''),
|
|
'resnext101_32x8d': _cfg(url='https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth'),
|
|
'resnext101_64x4d': _cfg(url=''),
|
|
'tv_resnext50_32x4d': _cfg(url='https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth'),
|
|
'ig_resnext101_32x8d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth'),
|
|
'ig_resnext101_32x16d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth'),
|
|
'ig_resnext101_32x32d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth'),
|
|
'ig_resnext101_32x48d': _cfg(url='https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth'),
|
|
}
|
|
|
|
|
|
def _get_padding(kernel_size, stride, dilation=1):
|
|
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
|
|
return padding
|
|
|
|
|
|
class SEModule(nn.Module):
|
|
|
|
def __init__(self, channels, reduction_channels):
|
|
super(SEModule, self).__init__()
|
|
#self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
|
self.fc1 = nn.Conv2d(
|
|
channels, reduction_channels, kernel_size=1, padding=0, bias=True)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.fc2 = nn.Conv2d(
|
|
reduction_channels, channels, kernel_size=1, padding=0, bias=True)
|
|
|
|
def forward(self, x):
|
|
#x_se = self.avg_pool(x)
|
|
x_se = x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x.size(1), 1, 1)
|
|
x_se = self.fc1(x_se)
|
|
x_se = self.relu(x_se)
|
|
x_se = self.fc2(x_se)
|
|
return x * x_se.sigmoid()
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
|
cardinality=1, base_width=64, use_se=False,
|
|
reduce_first=1, dilation=1, previous_dilation=1, norm_layer=nn.BatchNorm2d):
|
|
super(BasicBlock, self).__init__()
|
|
|
|
assert cardinality == 1, 'BasicBlock only supports cardinality of 1'
|
|
assert base_width == 64, 'BasicBlock doest not support changing base width'
|
|
first_planes = planes // reduce_first
|
|
outplanes = planes * self.expansion
|
|
|
|
self.conv1 = nn.Conv2d(
|
|
inplanes, first_planes, kernel_size=3, stride=stride, padding=dilation,
|
|
dilation=dilation, bias=False)
|
|
self.bn1 = norm_layer(first_planes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.conv2 = nn.Conv2d(
|
|
first_planes, outplanes, kernel_size=3, padding=previous_dilation,
|
|
dilation=previous_dilation, bias=False)
|
|
self.bn2 = norm_layer(outplanes)
|
|
self.se = SEModule(outplanes, planes // 4) if use_se else None
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
self.dilation = dilation
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.se is not None:
|
|
out = self.se(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
|
cardinality=1, base_width=64, use_se=False,
|
|
reduce_first=1, dilation=1, previous_dilation=1, norm_layer=nn.BatchNorm2d):
|
|
super(Bottleneck, self).__init__()
|
|
|
|
width = int(math.floor(planes * (base_width / 64)) * cardinality)
|
|
first_planes = width // reduce_first
|
|
outplanes = planes * self.expansion
|
|
|
|
self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=1, bias=False)
|
|
self.bn1 = norm_layer(first_planes)
|
|
self.conv2 = nn.Conv2d(
|
|
first_planes, width, kernel_size=3, stride=stride,
|
|
padding=dilation, dilation=dilation, groups=cardinality, bias=False)
|
|
self.bn2 = norm_layer(width)
|
|
self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False)
|
|
self.bn3 = norm_layer(outplanes)
|
|
self.se = SEModule(outplanes, planes // 4) if use_se else None
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
self.dilation = dilation
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.se is not None:
|
|
out = self.se(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
"""ResNet / ResNeXt / SE-ResNeXt / SE-Net
|
|
|
|
This class implements all variants of ResNet, ResNeXt, SE-ResNeXt, and SENet that
|
|
* have > 1 stride in the 3x3 conv layer of bottleneck
|
|
* have conv-bn-act ordering
|
|
|
|
This ResNet impl supports a number of stem and downsample options based on the v1c, v1d, v1e, and v1s
|
|
variants included in the MXNet Gluon ResNetV1b model. The C and D variants are also discussed in the
|
|
'Bag of Tricks' paper: https://arxiv.org/pdf/1812.01187. The B variant is equivalent to torchvision default.
|
|
|
|
ResNet variants:
|
|
* normal, b - 7x7 stem, stem_width = 64, same as torchvision ResNet, NVIDIA ResNet 'v1.5', Gluon v1b
|
|
* c - 3 layer deep 3x3 stem, stem_width = 32
|
|
* d - 3 layer deep 3x3 stem, stem_width = 32, average pool in downsample
|
|
* e - 3 layer deep 3x3 stem, stem_width = 64, average pool in downsample
|
|
* s - 3 layer deep 3x3 stem, stem_width = 64
|
|
|
|
ResNeXt
|
|
* normal - 7x7 stem, stem_width = 64, standard cardinality and base widths
|
|
* same c,d, e, s variants as ResNet can be enabled
|
|
|
|
SE-ResNeXt
|
|
* normal - 7x7 stem, stem_width = 64
|
|
* same c, d, e, s variants as ResNet can be enabled
|
|
|
|
SENet-154 - 3 layer deep 3x3 stem (same as v1c-v1s), stem_width = 64, cardinality=64,
|
|
reduction by 2 on width of first bottleneck convolution, 3x3 downsample convs after first block
|
|
|
|
Parameters
|
|
----------
|
|
block : Block
|
|
Class for the residual block. Options are BasicBlockGl, BottleneckGl.
|
|
layers : list of int
|
|
Numbers of layers in each block
|
|
num_classes : int, default 1000
|
|
Number of classification classes.
|
|
in_chans : int, default 3
|
|
Number of input (color) channels.
|
|
use_se : bool, default False
|
|
Enable Squeeze-Excitation module in blocks
|
|
cardinality : int, default 1
|
|
Number of convolution groups for 3x3 conv in Bottleneck.
|
|
base_width : int, default 64
|
|
Factor determining bottleneck channels. `planes * base_width / 64 * cardinality`
|
|
deep_stem : bool, default False
|
|
Whether to replace the 7x7 conv1 with 3 3x3 convolution layers.
|
|
stem_width : int, default 64
|
|
Number of channels in stem convolutions
|
|
block_reduce_first: int, default 1
|
|
Reduction factor for first convolution output width of residual blocks,
|
|
1 for all archs except senets, where 2
|
|
down_kernel_size: int, default 1
|
|
Kernel size of residual block downsampling path, 1x1 for most archs, 3x3 for senets
|
|
avg_down : bool, default False
|
|
Whether to use average pooling for projection skip connection between stages/downsample.
|
|
dilated : bool, default False
|
|
Applying dilation strategy to pretrained ResNet yielding a stride-8 model,
|
|
typically used in Semantic Segmentation.
|
|
drop_rate : float, default 0.
|
|
Dropout probability before classifier, for training
|
|
global_pool : str, default 'avg'
|
|
Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax'
|
|
"""
|
|
def __init__(self, block, layers, num_classes=1000, in_chans=3, use_se=False,
|
|
cardinality=1, base_width=64, stem_width=64, deep_stem=False,
|
|
block_reduce_first=1, down_kernel_size=1, avg_down=False, dilated=False,
|
|
norm_layer=nn.BatchNorm2d, drop_rate=0.0, global_pool='avg',
|
|
zero_init_last_bn=True, block_args=dict()):
|
|
self.num_classes = num_classes
|
|
self.inplanes = stem_width * 2 if deep_stem else 64
|
|
self.cardinality = cardinality
|
|
self.base_width = base_width
|
|
self.drop_rate = drop_rate
|
|
self.expansion = block.expansion
|
|
self.dilated = dilated
|
|
super(ResNet, self).__init__()
|
|
|
|
if deep_stem:
|
|
self.conv1 = nn.Sequential(*[
|
|
nn.Conv2d(in_chans, stem_width, 3, stride=2, padding=1, bias=False),
|
|
norm_layer(stem_width),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(stem_width, stem_width, 3, stride=1, padding=1, bias=False),
|
|
norm_layer(stem_width),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(stem_width, self.inplanes, 3, stride=1, padding=1, bias=False)])
|
|
else:
|
|
self.conv1 = nn.Conv2d(in_chans, stem_width, kernel_size=7, stride=2, padding=3, bias=False)
|
|
self.bn1 = norm_layer(self.inplanes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
stride_3_4 = 1 if self.dilated else 2
|
|
dilation_3 = 2 if self.dilated else 1
|
|
dilation_4 = 4 if self.dilated else 1
|
|
largs = dict(use_se=use_se, reduce_first=block_reduce_first, norm_layer=norm_layer,
|
|
avg_down=avg_down, down_kernel_size=down_kernel_size, **block_args)
|
|
self.layer1 = self._make_layer(block, 64, layers[0], stride=1, **largs)
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, **largs)
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=stride_3_4, dilation=dilation_3, **largs)
|
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=stride_3_4, dilation=dilation_4, **largs)
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
self.num_features = 512 * block.expansion
|
|
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
|
|
|
|
last_bn_name = 'bn3' if 'Bottleneck' in block.__name__ else 'bn2'
|
|
for n, m in self.named_modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
if zero_init_last_bn and 'layer' in n and last_bn_name in n:
|
|
# Initialize weight/gamma of last BN in each residual block to zero
|
|
nn.init.constant_(m.weight, 0.)
|
|
else:
|
|
nn.init.constant_(m.weight, 1.)
|
|
nn.init.constant_(m.bias, 0.)
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, reduce_first=1,
|
|
use_se=False, avg_down=False, down_kernel_size=1, norm_layer=nn.BatchNorm2d, **kwargs):
|
|
downsample = None
|
|
down_kernel_size = 1 if stride == 1 and dilation == 1 else down_kernel_size
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample_padding = _get_padding(down_kernel_size, stride)
|
|
downsample_layers = []
|
|
conv_stride = stride
|
|
if avg_down:
|
|
avg_stride = stride if dilation == 1 else 1
|
|
conv_stride = 1
|
|
downsample_layers = [nn.AvgPool2d(avg_stride, avg_stride, ceil_mode=True, count_include_pad=False)]
|
|
downsample_layers += [
|
|
nn.Conv2d(self.inplanes, planes * block.expansion, down_kernel_size,
|
|
stride=conv_stride, padding=downsample_padding, bias=False),
|
|
norm_layer(planes * block.expansion)]
|
|
downsample = nn.Sequential(*downsample_layers)
|
|
|
|
first_dilation = 1 if dilation in (1, 2) else 2
|
|
bargs = dict(
|
|
cardinality=self.cardinality, base_width=self.base_width, reduce_first=reduce_first,
|
|
use_se=use_se, norm_layer=norm_layer, **kwargs)
|
|
layers = [block(
|
|
self.inplanes, planes, stride, downsample, dilation=first_dilation, previous_dilation=dilation, **bargs)]
|
|
self.inplanes = planes * block.expansion
|
|
for i in range(1, blocks):
|
|
layers.append(block(
|
|
self.inplanes, planes, dilation=dilation, previous_dilation=dilation, **bargs))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def get_classifier(self):
|
|
return self.fc
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
self.num_classes = num_classes
|
|
del self.fc
|
|
if num_classes:
|
|
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
|
|
else:
|
|
self.fc = None
|
|
|
|
def forward_features(self, x, pool=True):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.maxpool(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
|
|
if pool:
|
|
x = self.global_pool(x)
|
|
x = x.view(x.size(0), -1)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
if self.drop_rate > 0.:
|
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
|
|
@register_model
|
|
def resnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNet-18 model.
|
|
"""
|
|
default_cfg = default_cfgs['resnet18']
|
|
model = ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def resnet34(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNet-34 model.
|
|
"""
|
|
default_cfg = default_cfgs['resnet34']
|
|
model = ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def resnet26(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNet-26 model.
|
|
"""
|
|
default_cfg = default_cfgs['resnet26']
|
|
model = ResNet(Bottleneck, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def resnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNet-26 v1d model.
|
|
This is technically a 28 layer ResNet, sticking with 'd' modifier from Gluon for now.
|
|
"""
|
|
default_cfg = default_cfgs['resnet26d']
|
|
model = ResNet(
|
|
Bottleneck, [2, 2, 2, 2], stem_width=32, deep_stem=True, avg_down=True,
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def resnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNet-50 model.
|
|
"""
|
|
default_cfg = default_cfgs['resnet50']
|
|
model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def resnet50d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNet-50-D model.
|
|
"""
|
|
default_cfg = default_cfgs['resnet50d']
|
|
model = ResNet(
|
|
Bottleneck, [3, 4, 6, 3], stem_width=32, deep_stem=True, avg_down=True,
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def resnet101(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNet-101 model.
|
|
"""
|
|
default_cfg = default_cfgs['resnet101']
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def resnet152(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNet-152 model.
|
|
"""
|
|
default_cfg = default_cfgs['resnet152']
|
|
model = ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def tv_resnet34(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNet-34 model with original Torchvision weights.
|
|
"""
|
|
model = ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfgs['tv_resnet34']
|
|
if pretrained:
|
|
load_pretrained(model, model.default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def tv_resnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNet-50 model with original Torchvision weights.
|
|
"""
|
|
model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfgs['tv_resnet50']
|
|
if pretrained:
|
|
load_pretrained(model, model.default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def wide_resnet50_2(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a Wide ResNet-50-2 model.
|
|
The model is the same as ResNet except for the bottleneck number of channels
|
|
which is twice larger in every block. The number of channels in outer 1x1
|
|
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
|
|
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
|
|
"""
|
|
model = ResNet(
|
|
Bottleneck, [3, 4, 6, 3], base_width=128,
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfgs['wide_resnet50_2']
|
|
if pretrained:
|
|
load_pretrained(model, model.default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def wide_resnet101_2(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a Wide ResNet-101-2 model.
|
|
The model is the same as ResNet except for the bottleneck number of channels
|
|
which is twice larger in every block. The number of channels in outer 1x1
|
|
convolutions is the same.
|
|
"""
|
|
model = ResNet(
|
|
Bottleneck, [3, 4, 23, 3], base_width=128,
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfgs['wide_resnet101_2']
|
|
if pretrained:
|
|
load_pretrained(model, model.default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def resnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNeXt50-32x4d model.
|
|
"""
|
|
default_cfg = default_cfgs['resnext50_32x4d']
|
|
model = ResNet(
|
|
Bottleneck, [3, 4, 6, 3], cardinality=32, base_width=4,
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def resnext50d_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNeXt50d-32x4d model. ResNext50 w/ deep stem & avg pool downsample
|
|
"""
|
|
default_cfg = default_cfgs['resnext50d_32x4d']
|
|
model = ResNet(
|
|
Bottleneck, [3, 4, 6, 3], cardinality=32, base_width=4,
|
|
stem_width=32, deep_stem=True, avg_down=True,
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def resnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNeXt-101 32x4d model.
|
|
"""
|
|
default_cfg = default_cfgs['resnext101_32x4d']
|
|
model = ResNet(
|
|
Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=4,
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def resnext101_32x8d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNeXt-101 32x8d model.
|
|
"""
|
|
default_cfg = default_cfgs['resnext101_32x8d']
|
|
model = ResNet(
|
|
Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=8,
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def resnext101_64x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNeXt101-64x4d model.
|
|
"""
|
|
default_cfg = default_cfgs['resnext101_32x4d']
|
|
model = ResNet(
|
|
Bottleneck, [3, 4, 23, 3], cardinality=64, base_width=4,
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def tv_resnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNeXt50-32x4d model with original Torchvision weights.
|
|
"""
|
|
default_cfg = default_cfgs['tv_resnext50_32x4d']
|
|
model = ResNet(
|
|
Bottleneck, [3, 4, 6, 3], cardinality=32, base_width=4,
|
|
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def ig_resnext101_32x8d(pretrained=True, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNeXt-101 32x8 model pre-trained on weakly-supervised data
|
|
and finetuned on ImageNet from Figure 5 in
|
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
|
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
|
|
Args:
|
|
pretrained (bool): load pretrained weights
|
|
num_classes (int): number of classes for classifier (default: 1000 for pretrained)
|
|
in_chans (int): number of input planes (default: 3 for pretrained / color)
|
|
"""
|
|
default_cfg = default_cfgs['ig_resnext101_32x8d']
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=8,
|
|
num_classes=1000, in_chans=3, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def ig_resnext101_32x16d(pretrained=True, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNeXt-101 32x16 model pre-trained on weakly-supervised data
|
|
and finetuned on ImageNet from Figure 5 in
|
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
|
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
|
|
Args:
|
|
pretrained (bool): load pretrained weights
|
|
num_classes (int): number of classes for classifier (default: 1000 for pretrained)
|
|
in_chans (int): number of input planes (default: 3 for pretrained / color)
|
|
"""
|
|
default_cfg = default_cfgs['ig_resnext101_32x16d']
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=16,
|
|
num_classes=1000, in_chans=3, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def ig_resnext101_32x32d(pretrained=True, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNeXt-101 32x32 model pre-trained on weakly-supervised data
|
|
and finetuned on ImageNet from Figure 5 in
|
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
|
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
|
|
Args:
|
|
pretrained (bool): load pretrained weights
|
|
num_classes (int): number of classes for classifier (default: 1000 for pretrained)
|
|
in_chans (int): number of input planes (default: 3 for pretrained / color)
|
|
"""
|
|
default_cfg = default_cfgs['ig_resnext101_32x32d']
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=32,
|
|
num_classes=1000, in_chans=3, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def ig_resnext101_32x48d(pretrained=True, num_classes=1000, in_chans=3, **kwargs):
|
|
"""Constructs a ResNeXt-101 32x48 model pre-trained on weakly-supervised data
|
|
and finetuned on ImageNet from Figure 5 in
|
|
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
|
|
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
|
|
Args:
|
|
pretrained (bool): load pretrained weights
|
|
num_classes (int): number of classes for classifier (default: 1000 for pretrained)
|
|
in_chans (int): number of input planes (default: 3 for pretrained / color)
|
|
"""
|
|
default_cfg = default_cfgs['ig_resnext101_32x48d']
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], cardinality=32, base_width=48,
|
|
num_classes=1000, in_chans=3, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|