You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
316 lines
10 KiB
316 lines
10 KiB
""" Pytorch Inception-V4 implementation
|
|
Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is
|
|
based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License)
|
|
"""
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
|
from .helpers import build_model_with_cfg
|
|
from .layers import create_classifier
|
|
from .registry import register_model
|
|
|
|
__all__ = ['InceptionV4']
|
|
|
|
default_cfgs = {
|
|
'inception_v4': {
|
|
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/inceptionv4-8e4777a0.pth',
|
|
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8),
|
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
|
'first_conv': 'features.0.conv', 'classifier': 'last_linear',
|
|
'label_offset': 1, # 1001 classes in pretrained weights
|
|
}
|
|
}
|
|
|
|
|
|
class BasicConv2d(nn.Module):
|
|
def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0):
|
|
super(BasicConv2d, self).__init__()
|
|
self.conv = nn.Conv2d(
|
|
in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
|
|
self.bn = nn.BatchNorm2d(out_planes, eps=0.001)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
x = self.relu(x)
|
|
return x
|
|
|
|
|
|
class Mixed3a(nn.Module):
|
|
def __init__(self):
|
|
super(Mixed3a, self).__init__()
|
|
self.maxpool = nn.MaxPool2d(3, stride=2)
|
|
self.conv = BasicConv2d(64, 96, kernel_size=3, stride=2)
|
|
|
|
def forward(self, x):
|
|
x0 = self.maxpool(x)
|
|
x1 = self.conv(x)
|
|
out = torch.cat((x0, x1), 1)
|
|
return out
|
|
|
|
|
|
class Mixed4a(nn.Module):
|
|
def __init__(self):
|
|
super(Mixed4a, self).__init__()
|
|
|
|
self.branch0 = nn.Sequential(
|
|
BasicConv2d(160, 64, kernel_size=1, stride=1),
|
|
BasicConv2d(64, 96, kernel_size=3, stride=1)
|
|
)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
BasicConv2d(160, 64, kernel_size=1, stride=1),
|
|
BasicConv2d(64, 64, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
BasicConv2d(64, 64, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
|
BasicConv2d(64, 96, kernel_size=(3, 3), stride=1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
out = torch.cat((x0, x1), 1)
|
|
return out
|
|
|
|
|
|
class Mixed5a(nn.Module):
|
|
def __init__(self):
|
|
super(Mixed5a, self).__init__()
|
|
self.conv = BasicConv2d(192, 192, kernel_size=3, stride=2)
|
|
self.maxpool = nn.MaxPool2d(3, stride=2)
|
|
|
|
def forward(self, x):
|
|
x0 = self.conv(x)
|
|
x1 = self.maxpool(x)
|
|
out = torch.cat((x0, x1), 1)
|
|
return out
|
|
|
|
|
|
class InceptionA(nn.Module):
|
|
def __init__(self):
|
|
super(InceptionA, self).__init__()
|
|
self.branch0 = BasicConv2d(384, 96, kernel_size=1, stride=1)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
BasicConv2d(384, 64, kernel_size=1, stride=1),
|
|
BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1)
|
|
)
|
|
|
|
self.branch2 = nn.Sequential(
|
|
BasicConv2d(384, 64, kernel_size=1, stride=1),
|
|
BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1),
|
|
BasicConv2d(96, 96, kernel_size=3, stride=1, padding=1)
|
|
)
|
|
|
|
self.branch3 = nn.Sequential(
|
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
|
BasicConv2d(384, 96, kernel_size=1, stride=1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
x2 = self.branch2(x)
|
|
x3 = self.branch3(x)
|
|
out = torch.cat((x0, x1, x2, x3), 1)
|
|
return out
|
|
|
|
|
|
class ReductionA(nn.Module):
|
|
def __init__(self):
|
|
super(ReductionA, self).__init__()
|
|
self.branch0 = BasicConv2d(384, 384, kernel_size=3, stride=2)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
BasicConv2d(384, 192, kernel_size=1, stride=1),
|
|
BasicConv2d(192, 224, kernel_size=3, stride=1, padding=1),
|
|
BasicConv2d(224, 256, kernel_size=3, stride=2)
|
|
)
|
|
|
|
self.branch2 = nn.MaxPool2d(3, stride=2)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
x2 = self.branch2(x)
|
|
out = torch.cat((x0, x1, x2), 1)
|
|
return out
|
|
|
|
|
|
class InceptionB(nn.Module):
|
|
def __init__(self):
|
|
super(InceptionB, self).__init__()
|
|
self.branch0 = BasicConv2d(1024, 384, kernel_size=1, stride=1)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
BasicConv2d(1024, 192, kernel_size=1, stride=1),
|
|
BasicConv2d(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
BasicConv2d(224, 256, kernel_size=(7, 1), stride=1, padding=(3, 0))
|
|
)
|
|
|
|
self.branch2 = nn.Sequential(
|
|
BasicConv2d(1024, 192, kernel_size=1, stride=1),
|
|
BasicConv2d(192, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
|
BasicConv2d(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
BasicConv2d(224, 224, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
|
BasicConv2d(224, 256, kernel_size=(1, 7), stride=1, padding=(0, 3))
|
|
)
|
|
|
|
self.branch3 = nn.Sequential(
|
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
|
BasicConv2d(1024, 128, kernel_size=1, stride=1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
x2 = self.branch2(x)
|
|
x3 = self.branch3(x)
|
|
out = torch.cat((x0, x1, x2, x3), 1)
|
|
return out
|
|
|
|
|
|
class ReductionB(nn.Module):
|
|
def __init__(self):
|
|
super(ReductionB, self).__init__()
|
|
|
|
self.branch0 = nn.Sequential(
|
|
BasicConv2d(1024, 192, kernel_size=1, stride=1),
|
|
BasicConv2d(192, 192, kernel_size=3, stride=2)
|
|
)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
BasicConv2d(1024, 256, kernel_size=1, stride=1),
|
|
BasicConv2d(256, 256, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
BasicConv2d(256, 320, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
|
BasicConv2d(320, 320, kernel_size=3, stride=2)
|
|
)
|
|
|
|
self.branch2 = nn.MaxPool2d(3, stride=2)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
x2 = self.branch2(x)
|
|
out = torch.cat((x0, x1, x2), 1)
|
|
return out
|
|
|
|
|
|
class InceptionC(nn.Module):
|
|
def __init__(self):
|
|
super(InceptionC, self).__init__()
|
|
|
|
self.branch0 = BasicConv2d(1536, 256, kernel_size=1, stride=1)
|
|
|
|
self.branch1_0 = BasicConv2d(1536, 384, kernel_size=1, stride=1)
|
|
self.branch1_1a = BasicConv2d(384, 256, kernel_size=(1, 3), stride=1, padding=(0, 1))
|
|
self.branch1_1b = BasicConv2d(384, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
|
|
|
self.branch2_0 = BasicConv2d(1536, 384, kernel_size=1, stride=1)
|
|
self.branch2_1 = BasicConv2d(384, 448, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
|
self.branch2_2 = BasicConv2d(448, 512, kernel_size=(1, 3), stride=1, padding=(0, 1))
|
|
self.branch2_3a = BasicConv2d(512, 256, kernel_size=(1, 3), stride=1, padding=(0, 1))
|
|
self.branch2_3b = BasicConv2d(512, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
|
|
|
self.branch3 = nn.Sequential(
|
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
|
BasicConv2d(1536, 256, kernel_size=1, stride=1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
|
|
x1_0 = self.branch1_0(x)
|
|
x1_1a = self.branch1_1a(x1_0)
|
|
x1_1b = self.branch1_1b(x1_0)
|
|
x1 = torch.cat((x1_1a, x1_1b), 1)
|
|
|
|
x2_0 = self.branch2_0(x)
|
|
x2_1 = self.branch2_1(x2_0)
|
|
x2_2 = self.branch2_2(x2_1)
|
|
x2_3a = self.branch2_3a(x2_2)
|
|
x2_3b = self.branch2_3b(x2_2)
|
|
x2 = torch.cat((x2_3a, x2_3b), 1)
|
|
|
|
x3 = self.branch3(x)
|
|
|
|
out = torch.cat((x0, x1, x2, x3), 1)
|
|
return out
|
|
|
|
|
|
class InceptionV4(nn.Module):
|
|
def __init__(self, num_classes=1000, in_chans=3, output_stride=32, drop_rate=0., global_pool='avg'):
|
|
super(InceptionV4, self).__init__()
|
|
assert output_stride == 32
|
|
self.drop_rate = drop_rate
|
|
self.num_classes = num_classes
|
|
self.num_features = 1536
|
|
|
|
self.features = nn.Sequential(
|
|
BasicConv2d(in_chans, 32, kernel_size=3, stride=2),
|
|
BasicConv2d(32, 32, kernel_size=3, stride=1),
|
|
BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1),
|
|
Mixed3a(),
|
|
Mixed4a(),
|
|
Mixed5a(),
|
|
InceptionA(),
|
|
InceptionA(),
|
|
InceptionA(),
|
|
InceptionA(),
|
|
ReductionA(), # Mixed6a
|
|
InceptionB(),
|
|
InceptionB(),
|
|
InceptionB(),
|
|
InceptionB(),
|
|
InceptionB(),
|
|
InceptionB(),
|
|
InceptionB(),
|
|
ReductionB(), # Mixed7a
|
|
InceptionC(),
|
|
InceptionC(),
|
|
InceptionC(),
|
|
)
|
|
self.feature_info = [
|
|
dict(num_chs=64, reduction=2, module='features.2'),
|
|
dict(num_chs=160, reduction=4, module='features.3'),
|
|
dict(num_chs=384, reduction=8, module='features.9'),
|
|
dict(num_chs=1024, reduction=16, module='features.17'),
|
|
dict(num_chs=1536, reduction=32, module='features.21'),
|
|
]
|
|
self.global_pool, self.last_linear = create_classifier(
|
|
self.num_features, self.num_classes, pool_type=global_pool)
|
|
|
|
def get_classifier(self):
|
|
return self.last_linear
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
self.num_classes = num_classes
|
|
self.global_pool, self.last_linear = create_classifier(
|
|
self.num_features, self.num_classes, pool_type=global_pool)
|
|
|
|
def forward_features(self, x):
|
|
return self.features(x)
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.global_pool(x)
|
|
if self.drop_rate > 0:
|
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
|
x = self.last_linear(x)
|
|
return x
|
|
|
|
|
|
def _create_inception_v4(variant, pretrained=False, **kwargs):
|
|
return build_model_with_cfg(
|
|
InceptionV4, variant, pretrained,
|
|
feature_cfg=dict(flatten_sequential=True),
|
|
**kwargs)
|
|
|
|
|
|
@register_model
|
|
def inception_v4(pretrained=False, **kwargs):
|
|
return _create_inception_v4('inception_v4', pretrained, **kwargs)
|