You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
76 lines
2.5 KiB
76 lines
2.5 KiB
import numpy as np
|
|
import pandas as pd
|
|
|
|
|
|
results = {
|
|
'results-imagenet.csv': [
|
|
'results-imagenet-real.csv',
|
|
'results-imagenetv2-matched-frequency.csv',
|
|
'results-sketch.csv'
|
|
],
|
|
'results-imagenet-a-clean.csv': [
|
|
'results-imagenet-a.csv',
|
|
],
|
|
'results-imagenet-r-clean.csv': [
|
|
'results-imagenet-r.csv',
|
|
],
|
|
}
|
|
|
|
|
|
def diff(base_df, test_csv):
|
|
base_models = base_df['model'].values
|
|
test_df = pd.read_csv(test_csv)
|
|
test_models = test_df['model'].values
|
|
|
|
rank_diff = np.zeros_like(test_models, dtype='object')
|
|
top1_diff = np.zeros_like(test_models, dtype='object')
|
|
top5_diff = np.zeros_like(test_models, dtype='object')
|
|
|
|
for rank, model in enumerate(test_models):
|
|
if model in base_models:
|
|
base_rank = int(np.where(base_models == model)[0])
|
|
top1_d = test_df['top1'][rank] - base_df['top1'][base_rank]
|
|
top5_d = test_df['top5'][rank] - base_df['top5'][base_rank]
|
|
|
|
# rank_diff
|
|
if rank == base_rank:
|
|
rank_diff[rank] = f'0'
|
|
elif rank > base_rank:
|
|
rank_diff[rank] = f'-{rank - base_rank}'
|
|
else:
|
|
rank_diff[rank] = f'+{base_rank - rank}'
|
|
|
|
# top1_diff
|
|
if top1_d >= .0:
|
|
top1_diff[rank] = f'+{top1_d:.3f}'
|
|
else:
|
|
top1_diff[rank] = f'-{abs(top1_d):.3f}'
|
|
|
|
# top5_diff
|
|
if top5_d >= .0:
|
|
top5_diff[rank] = f'+{top5_d:.3f}'
|
|
else:
|
|
top5_diff[rank] = f'-{abs(top5_d):.3f}'
|
|
|
|
else:
|
|
rank_diff[rank] = ''
|
|
top1_diff[rank] = ''
|
|
top5_diff[rank] = ''
|
|
|
|
test_df['top1_diff'] = top1_diff
|
|
test_df['top5_diff'] = top5_diff
|
|
test_df['rank_diff'] = rank_diff
|
|
|
|
test_df['param_count'] = test_df['param_count'].map('{:,.2f}'.format)
|
|
test_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True)
|
|
test_df.to_csv(test_csv, index=False, float_format='%.3f')
|
|
|
|
|
|
for base_results, test_results in results.items():
|
|
base_df = pd.read_csv(base_results)
|
|
base_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True)
|
|
for test_csv in test_results:
|
|
diff(base_df, test_csv)
|
|
base_df['param_count'] = base_df['param_count'].map('{:,.2f}'.format)
|
|
base_df.to_csv(base_results, index=False, float_format='%.3f')
|