You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/hfdocs/source/models/selecsls.mdx

203 lines
6.2 KiB

# SelecSLS
**SelecSLS** uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy.
## How do I use this model on an image?
To load a pretrained model:
```py
>>> import timm
>>> model = timm.create_model('selecsls42b', pretrained=True)
>>> model.eval()
```
To load and preprocess the image:
```py
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform
>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```py
>>> import torch
>>> with torch.no_grad():
... out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
... categories = [s.strip() for s in f.readlines()]
>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
... print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `selecsls42b`. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```py
>>> model = timm.create_model('selecsls42b', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts](scripts) for training a new model afresh.
## Citation
```BibTeX
@article{Mehta_2020,
title={XNect},
volume={39},
ISSN={1557-7368},
url={http://dx.doi.org/10.1145/3386569.3392410},
DOI={10.1145/3386569.3392410},
number={4},
journal={ACM Transactions on Graphics},
publisher={Association for Computing Machinery (ACM)},
author={Mehta, Dushyant and Sotnychenko, Oleksandr and Mueller, Franziska and Xu, Weipeng and Elgharib, Mohamed and Fua, Pascal and Seidel, Hans-Peter and Rhodin, Helge and Pons-Moll, Gerard and Theobalt, Christian},
year={2020},
month={Jul}
}
```
<!--
Type: model-index
Collections:
- Name: SelecSLS
Paper:
Title: 'XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera'
URL: https://paperswithcode.com/paper/xnect-real-time-multi-person-3d-human-pose
Models:
- Name: selecsls42b
In Collection: SelecSLS
Metadata:
FLOPs: 3824022528
Parameters: 32460000
File Size: 129948954
Architecture:
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Global Average Pooling
- ReLU
- SelecSLS Block
Tasks:
- Image Classification
Training Techniques:
- Cosine Annealing
- Random Erasing
Training Data:
- ImageNet
ID: selecsls42b
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L335
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls42b-8af30141.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.18%
Top 5 Accuracy: 93.39%
- Name: selecsls60
In Collection: SelecSLS
Metadata:
FLOPs: 4610472600
Parameters: 30670000
File Size: 122839714
Architecture:
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Global Average Pooling
- ReLU
- SelecSLS Block
Tasks:
- Image Classification
Training Techniques:
- Cosine Annealing
- Random Erasing
Training Data:
- ImageNet
ID: selecsls60
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L342
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60-bbf87526.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.99%
Top 5 Accuracy: 93.83%
- Name: selecsls60b
In Collection: SelecSLS
Metadata:
FLOPs: 4657653144
Parameters: 32770000
File Size: 131252898
Architecture:
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Global Average Pooling
- ReLU
- SelecSLS Block
Tasks:
- Image Classification
Training Techniques:
- Cosine Annealing
- Random Erasing
Training Data:
- ImageNet
ID: selecsls60b
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L349
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60b-94e619b5.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.41%
Top 5 Accuracy: 94.18%
-->