You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
445 lines
12 KiB
445 lines
12 KiB
# ResNet
|
|
|
|
**Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks.
|
|
|
|
## How do I use this model on an image?
|
|
|
|
To load a pretrained model:
|
|
|
|
```py
|
|
>>> import timm
|
|
>>> model = timm.create_model('resnet18', pretrained=True)
|
|
>>> model.eval()
|
|
```
|
|
|
|
To load and preprocess the image:
|
|
|
|
```py
|
|
>>> import urllib
|
|
>>> from PIL import Image
|
|
>>> from timm.data import resolve_data_config
|
|
>>> from timm.data.transforms_factory import create_transform
|
|
|
|
>>> config = resolve_data_config({}, model=model)
|
|
>>> transform = create_transform(**config)
|
|
|
|
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
|
|
>>> urllib.request.urlretrieve(url, filename)
|
|
>>> img = Image.open(filename).convert('RGB')
|
|
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
|
|
```
|
|
|
|
To get the model predictions:
|
|
|
|
```py
|
|
>>> import torch
|
|
>>> with torch.no_grad():
|
|
... out = model(tensor)
|
|
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
|
|
>>> print(probabilities.shape)
|
|
>>> # prints: torch.Size([1000])
|
|
```
|
|
|
|
To get the top-5 predictions class names:
|
|
|
|
```py
|
|
>>> # Get imagenet class mappings
|
|
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
|
|
>>> urllib.request.urlretrieve(url, filename)
|
|
>>> with open("imagenet_classes.txt", "r") as f:
|
|
... categories = [s.strip() for s in f.readlines()]
|
|
|
|
>>> # Print top categories per image
|
|
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
|
|
>>> for i in range(top5_prob.size(0)):
|
|
... print(categories[top5_catid[i]], top5_prob[i].item())
|
|
>>> # prints class names and probabilities like:
|
|
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
|
|
```
|
|
|
|
Replace the model name with the variant you want to use, e.g. `resnet18`. You can find the IDs in the model summaries at the top of this page.
|
|
|
|
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
|
|
|
|
## How do I finetune this model?
|
|
|
|
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
|
|
|
|
```py
|
|
>>> model = timm.create_model('resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
|
|
```
|
|
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
|
|
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
|
|
|
|
## How do I train this model?
|
|
|
|
You can follow the [timm recipe scripts](scripts) for training a new model afresh.
|
|
|
|
## Citation
|
|
|
|
```BibTeX
|
|
@article{DBLP:journals/corr/HeZRS15,
|
|
author = {Kaiming He and
|
|
Xiangyu Zhang and
|
|
Shaoqing Ren and
|
|
Jian Sun},
|
|
title = {Deep Residual Learning for Image Recognition},
|
|
journal = {CoRR},
|
|
volume = {abs/1512.03385},
|
|
year = {2015},
|
|
url = {http://arxiv.org/abs/1512.03385},
|
|
archivePrefix = {arXiv},
|
|
eprint = {1512.03385},
|
|
timestamp = {Wed, 17 Apr 2019 17:23:45 +0200},
|
|
biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib},
|
|
bibsource = {dblp computer science bibliography, https://dblp.org}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
Type: model-index
|
|
Collections:
|
|
- Name: ResNet
|
|
Paper:
|
|
Title: Deep Residual Learning for Image Recognition
|
|
URL: https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
|
Models:
|
|
- Name: resnet18
|
|
In Collection: ResNet
|
|
Metadata:
|
|
FLOPs: 2337073152
|
|
Parameters: 11690000
|
|
File Size: 46827520
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: resnet18
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bilinear
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L641
|
|
Weights: https://download.pytorch.org/models/resnet18-5c106cde.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 69.74%
|
|
Top 5 Accuracy: 89.09%
|
|
- Name: resnet26
|
|
In Collection: ResNet
|
|
Metadata:
|
|
FLOPs: 3026804736
|
|
Parameters: 16000000
|
|
File Size: 64129972
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: resnet26
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L675
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 75.29%
|
|
Top 5 Accuracy: 92.57%
|
|
- Name: resnet34
|
|
In Collection: ResNet
|
|
Metadata:
|
|
FLOPs: 4718469120
|
|
Parameters: 21800000
|
|
File Size: 87290831
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: resnet34
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bilinear
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L658
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 75.11%
|
|
Top 5 Accuracy: 92.28%
|
|
- Name: resnet50
|
|
In Collection: ResNet
|
|
Metadata:
|
|
FLOPs: 5282531328
|
|
Parameters: 25560000
|
|
File Size: 102488165
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: resnet50
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L691
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 79.04%
|
|
Top 5 Accuracy: 94.39%
|
|
- Name: resnetblur50
|
|
In Collection: ResNet
|
|
Metadata:
|
|
FLOPs: 6621606912
|
|
Parameters: 25560000
|
|
File Size: 102488165
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Blur Pooling
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: resnetblur50
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L1160
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 79.29%
|
|
Top 5 Accuracy: 94.64%
|
|
- Name: tv_resnet101
|
|
In Collection: ResNet
|
|
Metadata:
|
|
FLOPs: 10068547584
|
|
Parameters: 44550000
|
|
File Size: 178728960
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tv_resnet101
|
|
LR: 0.1
|
|
Epochs: 90
|
|
Crop Pct: '0.875'
|
|
LR Gamma: 0.1
|
|
Momentum: 0.9
|
|
Batch Size: 32
|
|
Image Size: '224'
|
|
LR Step Size: 30
|
|
Weight Decay: 0.0001
|
|
Interpolation: bilinear
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L761
|
|
Weights: https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 77.37%
|
|
Top 5 Accuracy: 93.56%
|
|
- Name: tv_resnet152
|
|
In Collection: ResNet
|
|
Metadata:
|
|
FLOPs: 14857660416
|
|
Parameters: 60190000
|
|
File Size: 241530880
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tv_resnet152
|
|
LR: 0.1
|
|
Epochs: 90
|
|
Crop Pct: '0.875'
|
|
LR Gamma: 0.1
|
|
Momentum: 0.9
|
|
Batch Size: 32
|
|
Image Size: '224'
|
|
LR Step Size: 30
|
|
Weight Decay: 0.0001
|
|
Interpolation: bilinear
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L769
|
|
Weights: https://download.pytorch.org/models/resnet152-b121ed2d.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 78.32%
|
|
Top 5 Accuracy: 94.05%
|
|
- Name: tv_resnet34
|
|
In Collection: ResNet
|
|
Metadata:
|
|
FLOPs: 4718469120
|
|
Parameters: 21800000
|
|
File Size: 87306240
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tv_resnet34
|
|
LR: 0.1
|
|
Epochs: 90
|
|
Crop Pct: '0.875'
|
|
LR Gamma: 0.1
|
|
Momentum: 0.9
|
|
Batch Size: 32
|
|
Image Size: '224'
|
|
LR Step Size: 30
|
|
Weight Decay: 0.0001
|
|
Interpolation: bilinear
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L745
|
|
Weights: https://download.pytorch.org/models/resnet34-333f7ec4.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 73.3%
|
|
Top 5 Accuracy: 91.42%
|
|
- Name: tv_resnet50
|
|
In Collection: ResNet
|
|
Metadata:
|
|
FLOPs: 5282531328
|
|
Parameters: 25560000
|
|
File Size: 102502400
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tv_resnet50
|
|
LR: 0.1
|
|
Epochs: 90
|
|
Crop Pct: '0.875'
|
|
LR Gamma: 0.1
|
|
Momentum: 0.9
|
|
Batch Size: 32
|
|
Image Size: '224'
|
|
LR Step Size: 30
|
|
Weight Decay: 0.0001
|
|
Interpolation: bilinear
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L753
|
|
Weights: https://download.pytorch.org/models/resnet50-19c8e357.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 76.16%
|
|
Top 5 Accuracy: 92.88%
|
|
--> |