You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
559 lines
16 KiB
559 lines
16 KiB
# RegNetX
|
|
|
|
**RegNetX** is a convolutional network design space with simple, regular models with parameters: depth $d$, initial width $w\_{0} > 0$, and slope $w\_{a} > 0$, and generates a different block width $u\_{j}$ for each block $j < d$. The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure):
|
|
|
|
$$ u\_{j} = w\_{0} + w\_{a}\cdot{j} $$
|
|
|
|
For **RegNetX** we have additional restrictions: we set $b = 1$ (the bottleneck ratio), $12 \leq d \leq 28$, and $w\_{m} \geq 2$ (the width multiplier).
|
|
|
|
## How do I use this model on an image?
|
|
|
|
To load a pretrained model:
|
|
|
|
```py
|
|
>>> import timm
|
|
>>> model = timm.create_model('regnetx_002', pretrained=True)
|
|
>>> model.eval()
|
|
```
|
|
|
|
To load and preprocess the image:
|
|
|
|
```py
|
|
>>> import urllib
|
|
>>> from PIL import Image
|
|
>>> from timm.data import resolve_data_config
|
|
>>> from timm.data.transforms_factory import create_transform
|
|
|
|
>>> config = resolve_data_config({}, model=model)
|
|
>>> transform = create_transform(**config)
|
|
|
|
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
|
|
>>> urllib.request.urlretrieve(url, filename)
|
|
>>> img = Image.open(filename).convert('RGB')
|
|
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
|
|
```
|
|
|
|
To get the model predictions:
|
|
|
|
```py
|
|
>>> import torch
|
|
>>> with torch.no_grad():
|
|
... out = model(tensor)
|
|
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
|
|
>>> print(probabilities.shape)
|
|
>>> # prints: torch.Size([1000])
|
|
```
|
|
|
|
To get the top-5 predictions class names:
|
|
|
|
```py
|
|
>>> # Get imagenet class mappings
|
|
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
|
|
>>> urllib.request.urlretrieve(url, filename)
|
|
>>> with open("imagenet_classes.txt", "r") as f:
|
|
... categories = [s.strip() for s in f.readlines()]
|
|
|
|
>>> # Print top categories per image
|
|
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
|
|
>>> for i in range(top5_prob.size(0)):
|
|
... print(categories[top5_catid[i]], top5_prob[i].item())
|
|
>>> # prints class names and probabilities like:
|
|
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
|
|
```
|
|
|
|
Replace the model name with the variant you want to use, e.g. `regnetx_002`. You can find the IDs in the model summaries at the top of this page.
|
|
|
|
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
|
|
|
|
## How do I finetune this model?
|
|
|
|
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
|
|
|
|
```py
|
|
>>> model = timm.create_model('regnetx_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
|
|
```
|
|
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
|
|
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
|
|
|
|
## How do I train this model?
|
|
|
|
You can follow the [timm recipe scripts](scripts) for training a new model afresh.
|
|
|
|
## Citation
|
|
|
|
```BibTeX
|
|
@misc{radosavovic2020designing,
|
|
title={Designing Network Design Spaces},
|
|
author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár},
|
|
year={2020},
|
|
eprint={2003.13678},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CV}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
Type: model-index
|
|
Collections:
|
|
- Name: RegNetX
|
|
Paper:
|
|
Title: Designing Network Design Spaces
|
|
URL: https://paperswithcode.com/paper/designing-network-design-spaces
|
|
Models:
|
|
- Name: regnetx_002
|
|
In Collection: RegNetX
|
|
Metadata:
|
|
FLOPs: 255276032
|
|
Parameters: 2680000
|
|
File Size: 10862199
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Global Average Pooling
|
|
- Grouped Convolution
|
|
- ReLU
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 8x NVIDIA V100 GPUs
|
|
ID: regnetx_002
|
|
Epochs: 100
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 1024
|
|
Image Size: '224'
|
|
Weight Decay: 5.0e-05
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L337
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_002-e7e85e5c.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 68.75%
|
|
Top 5 Accuracy: 88.56%
|
|
- Name: regnetx_004
|
|
In Collection: RegNetX
|
|
Metadata:
|
|
FLOPs: 510619136
|
|
Parameters: 5160000
|
|
File Size: 20841309
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Global Average Pooling
|
|
- Grouped Convolution
|
|
- ReLU
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 8x NVIDIA V100 GPUs
|
|
ID: regnetx_004
|
|
Epochs: 100
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 1024
|
|
Image Size: '224'
|
|
Weight Decay: 5.0e-05
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L343
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_004-7d0e9424.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 72.39%
|
|
Top 5 Accuracy: 90.82%
|
|
- Name: regnetx_006
|
|
In Collection: RegNetX
|
|
Metadata:
|
|
FLOPs: 771659136
|
|
Parameters: 6200000
|
|
File Size: 24965172
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Global Average Pooling
|
|
- Grouped Convolution
|
|
- ReLU
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 8x NVIDIA V100 GPUs
|
|
ID: regnetx_006
|
|
Epochs: 100
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 1024
|
|
Image Size: '224'
|
|
Weight Decay: 5.0e-05
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L349
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_006-85ec1baa.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 73.84%
|
|
Top 5 Accuracy: 91.68%
|
|
- Name: regnetx_008
|
|
In Collection: RegNetX
|
|
Metadata:
|
|
FLOPs: 1027038208
|
|
Parameters: 7260000
|
|
File Size: 29235944
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Global Average Pooling
|
|
- Grouped Convolution
|
|
- ReLU
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 8x NVIDIA V100 GPUs
|
|
ID: regnetx_008
|
|
Epochs: 100
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 1024
|
|
Image Size: '224'
|
|
Weight Decay: 5.0e-05
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L355
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_008-d8b470eb.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 75.05%
|
|
Top 5 Accuracy: 92.34%
|
|
- Name: regnetx_016
|
|
In Collection: RegNetX
|
|
Metadata:
|
|
FLOPs: 2059337856
|
|
Parameters: 9190000
|
|
File Size: 36988158
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Global Average Pooling
|
|
- Grouped Convolution
|
|
- ReLU
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 8x NVIDIA V100 GPUs
|
|
ID: regnetx_016
|
|
Epochs: 100
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 1024
|
|
Image Size: '224'
|
|
Weight Decay: 5.0e-05
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L361
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_016-65ca972a.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 76.95%
|
|
Top 5 Accuracy: 93.43%
|
|
- Name: regnetx_032
|
|
In Collection: RegNetX
|
|
Metadata:
|
|
FLOPs: 4082555904
|
|
Parameters: 15300000
|
|
File Size: 61509573
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Global Average Pooling
|
|
- Grouped Convolution
|
|
- ReLU
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 8x NVIDIA V100 GPUs
|
|
ID: regnetx_032
|
|
Epochs: 100
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 512
|
|
Image Size: '224'
|
|
Weight Decay: 5.0e-05
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L367
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_032-ed0c7f7e.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 78.15%
|
|
Top 5 Accuracy: 94.09%
|
|
- Name: regnetx_040
|
|
In Collection: RegNetX
|
|
Metadata:
|
|
FLOPs: 5095167744
|
|
Parameters: 22120000
|
|
File Size: 88844824
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Global Average Pooling
|
|
- Grouped Convolution
|
|
- ReLU
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 8x NVIDIA V100 GPUs
|
|
ID: regnetx_040
|
|
Epochs: 100
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 512
|
|
Image Size: '224'
|
|
Weight Decay: 5.0e-05
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L373
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_040-73c2a654.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 78.48%
|
|
Top 5 Accuracy: 94.25%
|
|
- Name: regnetx_064
|
|
In Collection: RegNetX
|
|
Metadata:
|
|
FLOPs: 8303405824
|
|
Parameters: 26210000
|
|
File Size: 105184854
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Global Average Pooling
|
|
- Grouped Convolution
|
|
- ReLU
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 8x NVIDIA V100 GPUs
|
|
ID: regnetx_064
|
|
Epochs: 100
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 512
|
|
Image Size: '224'
|
|
Weight Decay: 5.0e-05
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L379
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_064-29278baa.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 79.06%
|
|
Top 5 Accuracy: 94.47%
|
|
- Name: regnetx_080
|
|
In Collection: RegNetX
|
|
Metadata:
|
|
FLOPs: 10276726784
|
|
Parameters: 39570000
|
|
File Size: 158720042
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Global Average Pooling
|
|
- Grouped Convolution
|
|
- ReLU
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 8x NVIDIA V100 GPUs
|
|
ID: regnetx_080
|
|
Epochs: 100
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 512
|
|
Image Size: '224'
|
|
Weight Decay: 5.0e-05
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L385
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_080-7c7fcab1.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 79.21%
|
|
Top 5 Accuracy: 94.55%
|
|
- Name: regnetx_120
|
|
In Collection: RegNetX
|
|
Metadata:
|
|
FLOPs: 15536378368
|
|
Parameters: 46110000
|
|
File Size: 184866342
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Global Average Pooling
|
|
- Grouped Convolution
|
|
- ReLU
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 8x NVIDIA V100 GPUs
|
|
ID: regnetx_120
|
|
Epochs: 100
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 512
|
|
Image Size: '224'
|
|
Weight Decay: 5.0e-05
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L391
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_120-65d5521e.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 79.61%
|
|
Top 5 Accuracy: 94.73%
|
|
- Name: regnetx_160
|
|
In Collection: RegNetX
|
|
Metadata:
|
|
FLOPs: 20491740672
|
|
Parameters: 54280000
|
|
File Size: 217623862
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Global Average Pooling
|
|
- Grouped Convolution
|
|
- ReLU
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 8x NVIDIA V100 GPUs
|
|
ID: regnetx_160
|
|
Epochs: 100
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 512
|
|
Image Size: '224'
|
|
Weight Decay: 5.0e-05
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L397
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_160-c98c4112.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 79.84%
|
|
Top 5 Accuracy: 94.82%
|
|
- Name: regnetx_320
|
|
In Collection: RegNetX
|
|
Metadata:
|
|
FLOPs: 40798958592
|
|
Parameters: 107810000
|
|
File Size: 431962133
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Global Average Pooling
|
|
- Grouped Convolution
|
|
- ReLU
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 8x NVIDIA V100 GPUs
|
|
ID: regnetx_320
|
|
Epochs: 100
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 256
|
|
Image Size: '224'
|
|
Weight Decay: 5.0e-05
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L403
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_320-8ea38b93.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 80.25%
|
|
Top 5 Accuracy: 95.03%
|
|
--> |