You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/hfdocs/source/models/ecaresnet.mdx

303 lines
9.2 KiB

# ECA-ResNet
An **ECA ResNet** is a variant on a [ResNet](https://paperswithcode.com/method/resnet) that utilises an [Efficient Channel Attention module](https://paperswithcode.com/method/efficient-channel-attention). Efficient Channel Attention is an architectural unit based on [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) that reduces model complexity without dimensionality reduction.
## How do I use this model on an image?
To load a pretrained model:
```py
>>> import timm
>>> model = timm.create_model('ecaresnet101d', pretrained=True)
>>> model.eval()
```
To load and preprocess the image:
```py
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform
>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```py
>>> import torch
>>> with torch.no_grad():
... out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
... categories = [s.strip() for s in f.readlines()]
>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
... print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `ecaresnet101d`. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```py
>>> model = timm.create_model('ecaresnet101d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts](scripts) for training a new model afresh.
## Citation
```BibTeX
@misc{wang2020ecanet,
title={ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks},
author={Qilong Wang and Banggu Wu and Pengfei Zhu and Peihua Li and Wangmeng Zuo and Qinghua Hu},
year={2020},
eprint={1910.03151},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Type: model-index
Collections:
- Name: ECAResNet
Paper:
Title: 'ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks'
URL: https://paperswithcode.com/paper/eca-net-efficient-channel-attention-for-deep
Models:
- Name: ecaresnet101d
In Collection: ECAResNet
Metadata:
FLOPs: 10377193728
Parameters: 44570000
File Size: 178815067
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Efficient Channel Attention
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x RTX 2080Ti GPUs
ID: ecaresnet101d
LR: 0.1
Epochs: 100
Layers: 101
Crop Pct: '0.875'
Batch Size: 256
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1087
Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNet101D_281c5844.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 82.18%
Top 5 Accuracy: 96.06%
- Name: ecaresnet101d_pruned
In Collection: ECAResNet
Metadata:
FLOPs: 4463972081
Parameters: 24880000
File Size: 99852736
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Efficient Channel Attention
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
ID: ecaresnet101d_pruned
Layers: 101
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1097
Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45610/outputs/ECAResNet101D_P_75a3370e.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.82%
Top 5 Accuracy: 95.64%
- Name: ecaresnet50d
In Collection: ECAResNet
Metadata:
FLOPs: 5591090432
Parameters: 25580000
File Size: 102579290
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Efficient Channel Attention
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x RTX 2080Ti GPUs
ID: ecaresnet50d
LR: 0.1
Epochs: 100
Layers: 50
Crop Pct: '0.875'
Batch Size: 256
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1045
Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNet50D_833caf58.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.61%
Top 5 Accuracy: 95.31%
- Name: ecaresnet50d_pruned
In Collection: ECAResNet
Metadata:
FLOPs: 3250730657
Parameters: 19940000
File Size: 79990436
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Efficient Channel Attention
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
ID: ecaresnet50d_pruned
Layers: 50
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1055
Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45899/outputs/ECAResNet50D_P_9c67f710.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.71%
Top 5 Accuracy: 94.88%
- Name: ecaresnetlight
In Collection: ECAResNet
Metadata:
FLOPs: 5276118784
Parameters: 30160000
File Size: 120956612
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Efficient Channel Attention
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
ID: ecaresnetlight
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1077
Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNetLight_4f34b35b.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.46%
Top 5 Accuracy: 95.25%
-->