You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
524 lines
14 KiB
524 lines
14 KiB
# AdvProp (EfficientNet)
|
|
|
|
**AdvProp** is an adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to the method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples.
|
|
|
|
The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu).
|
|
|
|
## How do I use this model on an image?
|
|
|
|
To load a pretrained model:
|
|
|
|
```py
|
|
>>> import timm
|
|
>>> model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True)
|
|
>>> model.eval()
|
|
```
|
|
|
|
To load and preprocess the image:
|
|
|
|
```py
|
|
>>> import urllib
|
|
>>> from PIL import Image
|
|
>>> from timm.data import resolve_data_config
|
|
>>> from timm.data.transforms_factory import create_transform
|
|
|
|
>>> config = resolve_data_config({}, model=model)
|
|
>>> transform = create_transform(**config)
|
|
|
|
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
|
|
>>> urllib.request.urlretrieve(url, filename)
|
|
>>> img = Image.open(filename).convert('RGB')
|
|
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
|
|
```
|
|
|
|
To get the model predictions:
|
|
|
|
```py
|
|
>>> import torch
|
|
>>> with torch.no_grad():
|
|
... out = model(tensor)
|
|
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
|
|
>>> print(probabilities.shape)
|
|
>>> # prints: torch.Size([1000])
|
|
```
|
|
|
|
To get the top-5 predictions class names:
|
|
|
|
```py
|
|
>>> # Get imagenet class mappings
|
|
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
|
|
>>> urllib.request.urlretrieve(url, filename)
|
|
>>> with open("imagenet_classes.txt", "r") as f:
|
|
... categories = [s.strip() for s in f.readlines()]
|
|
|
|
>>> # Print top categories per image
|
|
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
|
|
>>> for i in range(top5_prob.size(0)):
|
|
... print(categories[top5_catid[i]], top5_prob[i].item())
|
|
>>> # prints class names and probabilities like:
|
|
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
|
|
```
|
|
|
|
Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0_ap`. You can find the IDs in the model summaries at the top of this page.
|
|
|
|
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
|
|
|
|
## How do I finetune this model?
|
|
|
|
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
|
|
|
|
```py
|
|
>>> model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
|
|
```
|
|
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
|
|
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
|
|
|
|
## How do I train this model?
|
|
|
|
You can follow the [timm recipe scripts](scripts) for training a new model afresh.
|
|
|
|
## Citation
|
|
|
|
```BibTeX
|
|
@misc{xie2020adversarial,
|
|
title={Adversarial Examples Improve Image Recognition},
|
|
author={Cihang Xie and Mingxing Tan and Boqing Gong and Jiang Wang and Alan Yuille and Quoc V. Le},
|
|
year={2020},
|
|
eprint={1911.09665},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CV}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
Type: model-index
|
|
Collections:
|
|
- Name: AdvProp
|
|
Paper:
|
|
Title: Adversarial Examples Improve Image Recognition
|
|
URL: https://paperswithcode.com/paper/adversarial-examples-improve-image
|
|
Models:
|
|
- Name: tf_efficientnet_b0_ap
|
|
In Collection: AdvProp
|
|
Metadata:
|
|
FLOPs: 488688572
|
|
Parameters: 5290000
|
|
File Size: 21385973
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Average Pooling
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Squeeze-and-Excitation Block
|
|
- Swish
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- AdvProp
|
|
- AutoAugment
|
|
- Label Smoothing
|
|
- RMSProp
|
|
- Stochastic Depth
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tf_efficientnet_b0_ap
|
|
LR: 0.256
|
|
Epochs: 350
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 2048
|
|
Image Size: '224'
|
|
Weight Decay: 1.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Label Smoothing: 0.1
|
|
BatchNorm Momentum: 0.99
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1334
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 77.1%
|
|
Top 5 Accuracy: 93.26%
|
|
- Name: tf_efficientnet_b1_ap
|
|
In Collection: AdvProp
|
|
Metadata:
|
|
FLOPs: 883633200
|
|
Parameters: 7790000
|
|
File Size: 31515350
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Average Pooling
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Squeeze-and-Excitation Block
|
|
- Swish
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- AdvProp
|
|
- AutoAugment
|
|
- Label Smoothing
|
|
- RMSProp
|
|
- Stochastic Depth
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tf_efficientnet_b1_ap
|
|
LR: 0.256
|
|
Epochs: 350
|
|
Crop Pct: '0.882'
|
|
Momentum: 0.9
|
|
Batch Size: 2048
|
|
Image Size: '240'
|
|
Weight Decay: 1.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Label Smoothing: 0.1
|
|
BatchNorm Momentum: 0.99
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1344
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 79.28%
|
|
Top 5 Accuracy: 94.3%
|
|
- Name: tf_efficientnet_b2_ap
|
|
In Collection: AdvProp
|
|
Metadata:
|
|
FLOPs: 1234321170
|
|
Parameters: 9110000
|
|
File Size: 36800745
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Average Pooling
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Squeeze-and-Excitation Block
|
|
- Swish
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- AdvProp
|
|
- AutoAugment
|
|
- Label Smoothing
|
|
- RMSProp
|
|
- Stochastic Depth
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tf_efficientnet_b2_ap
|
|
LR: 0.256
|
|
Epochs: 350
|
|
Crop Pct: '0.89'
|
|
Momentum: 0.9
|
|
Batch Size: 2048
|
|
Image Size: '260'
|
|
Weight Decay: 1.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Label Smoothing: 0.1
|
|
BatchNorm Momentum: 0.99
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1354
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 80.3%
|
|
Top 5 Accuracy: 95.03%
|
|
- Name: tf_efficientnet_b3_ap
|
|
In Collection: AdvProp
|
|
Metadata:
|
|
FLOPs: 2275247568
|
|
Parameters: 12230000
|
|
File Size: 49384538
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Average Pooling
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Squeeze-and-Excitation Block
|
|
- Swish
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- AdvProp
|
|
- AutoAugment
|
|
- Label Smoothing
|
|
- RMSProp
|
|
- Stochastic Depth
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tf_efficientnet_b3_ap
|
|
LR: 0.256
|
|
Epochs: 350
|
|
Crop Pct: '0.904'
|
|
Momentum: 0.9
|
|
Batch Size: 2048
|
|
Image Size: '300'
|
|
Weight Decay: 1.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Label Smoothing: 0.1
|
|
BatchNorm Momentum: 0.99
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1364
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 81.82%
|
|
Top 5 Accuracy: 95.62%
|
|
- Name: tf_efficientnet_b4_ap
|
|
In Collection: AdvProp
|
|
Metadata:
|
|
FLOPs: 5749638672
|
|
Parameters: 19340000
|
|
File Size: 77993585
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Average Pooling
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Squeeze-and-Excitation Block
|
|
- Swish
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- AdvProp
|
|
- AutoAugment
|
|
- Label Smoothing
|
|
- RMSProp
|
|
- Stochastic Depth
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tf_efficientnet_b4_ap
|
|
LR: 0.256
|
|
Epochs: 350
|
|
Crop Pct: '0.922'
|
|
Momentum: 0.9
|
|
Batch Size: 2048
|
|
Image Size: '380'
|
|
Weight Decay: 1.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Label Smoothing: 0.1
|
|
BatchNorm Momentum: 0.99
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1374
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 83.26%
|
|
Top 5 Accuracy: 96.39%
|
|
- Name: tf_efficientnet_b5_ap
|
|
In Collection: AdvProp
|
|
Metadata:
|
|
FLOPs: 13176501888
|
|
Parameters: 30390000
|
|
File Size: 122403150
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Average Pooling
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Squeeze-and-Excitation Block
|
|
- Swish
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- AdvProp
|
|
- AutoAugment
|
|
- Label Smoothing
|
|
- RMSProp
|
|
- Stochastic Depth
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tf_efficientnet_b5_ap
|
|
LR: 0.256
|
|
Epochs: 350
|
|
Crop Pct: '0.934'
|
|
Momentum: 0.9
|
|
Batch Size: 2048
|
|
Image Size: '456'
|
|
Weight Decay: 1.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Label Smoothing: 0.1
|
|
BatchNorm Momentum: 0.99
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1384
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 84.25%
|
|
Top 5 Accuracy: 96.97%
|
|
- Name: tf_efficientnet_b6_ap
|
|
In Collection: AdvProp
|
|
Metadata:
|
|
FLOPs: 24180518488
|
|
Parameters: 43040000
|
|
File Size: 173237466
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Average Pooling
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Squeeze-and-Excitation Block
|
|
- Swish
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- AdvProp
|
|
- AutoAugment
|
|
- Label Smoothing
|
|
- RMSProp
|
|
- Stochastic Depth
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tf_efficientnet_b6_ap
|
|
LR: 0.256
|
|
Epochs: 350
|
|
Crop Pct: '0.942'
|
|
Momentum: 0.9
|
|
Batch Size: 2048
|
|
Image Size: '528'
|
|
Weight Decay: 1.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Label Smoothing: 0.1
|
|
BatchNorm Momentum: 0.99
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1394
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 84.79%
|
|
Top 5 Accuracy: 97.14%
|
|
- Name: tf_efficientnet_b7_ap
|
|
In Collection: AdvProp
|
|
Metadata:
|
|
FLOPs: 48205304880
|
|
Parameters: 66349999
|
|
File Size: 266850607
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Average Pooling
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Squeeze-and-Excitation Block
|
|
- Swish
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- AdvProp
|
|
- AutoAugment
|
|
- Label Smoothing
|
|
- RMSProp
|
|
- Stochastic Depth
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tf_efficientnet_b7_ap
|
|
LR: 0.256
|
|
Epochs: 350
|
|
Crop Pct: '0.949'
|
|
Momentum: 0.9
|
|
Batch Size: 2048
|
|
Image Size: '600'
|
|
Weight Decay: 1.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Label Smoothing: 0.1
|
|
BatchNorm Momentum: 0.99
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1405
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 85.12%
|
|
Top 5 Accuracy: 97.25%
|
|
- Name: tf_efficientnet_b8_ap
|
|
In Collection: AdvProp
|
|
Metadata:
|
|
FLOPs: 80962956270
|
|
Parameters: 87410000
|
|
File Size: 351412563
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Average Pooling
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Dense Connections
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Squeeze-and-Excitation Block
|
|
- Swish
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- AdvProp
|
|
- AutoAugment
|
|
- Label Smoothing
|
|
- RMSProp
|
|
- Stochastic Depth
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
ID: tf_efficientnet_b8_ap
|
|
LR: 0.128
|
|
Epochs: 350
|
|
Crop Pct: '0.954'
|
|
Momentum: 0.9
|
|
Batch Size: 2048
|
|
Image Size: '672'
|
|
Weight Decay: 1.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Label Smoothing: 0.1
|
|
BatchNorm Momentum: 0.99
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1416
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 85.37%
|
|
Top 5 Accuracy: 97.3%
|
|
--> |