You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/models/_prune.py

112 lines
4.0 KiB

import os
from copy import deepcopy
from torch import nn as nn
from timm.layers import Conv2dSame, BatchNormAct2d, Linear
def extract_layer(model, layer):
layer = layer.split('.')
module = model
if hasattr(model, 'module') and layer[0] != 'module':
module = model.module
if not hasattr(model, 'module') and layer[0] == 'module':
layer = layer[1:]
for l in layer:
if hasattr(module, l):
if not l.isdigit():
module = getattr(module, l)
else:
module = module[int(l)]
else:
return module
return module
def set_layer(model, layer, val):
layer = layer.split('.')
module = model
if hasattr(model, 'module') and layer[0] != 'module':
module = model.module
lst_index = 0
module2 = module
for l in layer:
if hasattr(module2, l):
if not l.isdigit():
module2 = getattr(module2, l)
else:
module2 = module2[int(l)]
lst_index += 1
lst_index -= 1
for l in layer[:lst_index]:
if not l.isdigit():
module = getattr(module, l)
else:
module = module[int(l)]
l = layer[lst_index]
setattr(module, l, val)
def adapt_model_from_string(parent_module, model_string):
separator = '***'
state_dict = {}
lst_shape = model_string.split(separator)
for k in lst_shape:
k = k.split(':')
key = k[0]
shape = k[1][1:-1].split(',')
if shape[0] != '':
state_dict[key] = [int(i) for i in shape]
new_module = deepcopy(parent_module)
for n, m in parent_module.named_modules():
old_module = extract_layer(parent_module, n)
if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame):
if isinstance(old_module, Conv2dSame):
conv = Conv2dSame
else:
conv = nn.Conv2d
s = state_dict[n + '.weight']
in_channels = s[1]
out_channels = s[0]
g = 1
if old_module.groups > 1:
in_channels = out_channels
g = in_channels
new_conv = conv(
in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size,
bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation,
groups=g, stride=old_module.stride)
set_layer(new_module, n, new_conv)
elif isinstance(old_module, BatchNormAct2d):
new_bn = BatchNormAct2d(
state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum,
affine=old_module.affine, track_running_stats=True)
new_bn.drop = old_module.drop
new_bn.act = old_module.act
set_layer(new_module, n, new_bn)
elif isinstance(old_module, nn.BatchNorm2d):
new_bn = nn.BatchNorm2d(
num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum,
affine=old_module.affine, track_running_stats=True)
set_layer(new_module, n, new_bn)
elif isinstance(old_module, nn.Linear):
# FIXME extra checks to ensure this is actually the FC classifier layer and not a diff Linear layer?
num_features = state_dict[n + '.weight'][1]
new_fc = Linear(
in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None)
set_layer(new_module, n, new_fc)
if hasattr(new_module, 'num_features'):
new_module.num_features = num_features
new_module.eval()
parent_module.eval()
return new_module
def adapt_model_from_file(parent_module, model_variant):
adapt_file = os.path.join(os.path.dirname(__file__), '_pruned', model_variant + '.txt')
with open(adapt_file, 'r') as f:
return adapt_model_from_string(parent_module, f.read().strip())