You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/loss/binary_cross_entropy.py

24 lines
862 B

import torch
import torch.nn as nn
import torch.nn.functional as F
class DenseBinaryCrossEntropy(nn.Module):
""" BCE using one-hot from dense targets w/ label smoothing
NOTE for experiments comparing CE to BCE /w label smoothing, may remove
"""
def __init__(self, smoothing=0.1):
super(DenseBinaryCrossEntropy, self).__init__()
assert 0. <= smoothing < 1.0
self.smoothing = smoothing
self.bce = nn.BCEWithLogitsLoss()
def forward(self, x, target):
num_classes = x.shape[-1]
off_value = self.smoothing / num_classes
on_value = 1. - self.smoothing + off_value
target = target.long().view(-1, 1)
target = torch.full(
(target.size()[0], num_classes), off_value, device=x.device, dtype=x.dtype).scatter_(1, target, on_value)
return self.bce(x, target)