62 lines
2.4 KiB
62 lines
2.4 KiB
""" Lookahead Optimizer Wrapper.
|
|
Implementation modified from: https://github.com/alphadl/lookahead.pytorch
|
|
Paper: `Lookahead Optimizer: k steps forward, 1 step back` - https://arxiv.org/abs/1907.08610
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
"""
|
|
import torch
|
|
from torch.optim.optimizer import Optimizer
|
|
from collections import defaultdict
|
|
|
|
|
|
class Lookahead(Optimizer):
|
|
def __init__(self, base_optimizer, alpha=0.5, k=6):
|
|
# NOTE super().__init__() not called on purpose
|
|
if not 0.0 <= alpha <= 1.0:
|
|
raise ValueError(f'Invalid slow update rate: {alpha}')
|
|
if not 1 <= k:
|
|
raise ValueError(f'Invalid lookahead steps: {k}')
|
|
defaults = dict(lookahead_alpha=alpha, lookahead_k=k, lookahead_step=0)
|
|
self._base_optimizer = base_optimizer
|
|
self.param_groups = base_optimizer.param_groups
|
|
self.defaults = base_optimizer.defaults
|
|
self.defaults.update(defaults)
|
|
self.state = defaultdict(dict)
|
|
# manually add our defaults to the param groups
|
|
for name, default in defaults.items():
|
|
for group in self._base_optimizer.param_groups:
|
|
group.setdefault(name, default)
|
|
|
|
@torch.no_grad()
|
|
def update_slow(self, group):
|
|
for fast_p in group["params"]:
|
|
if fast_p.grad is None:
|
|
continue
|
|
param_state = self._base_optimizer.state[fast_p]
|
|
if 'lookahead_slow_buff' not in param_state:
|
|
param_state['lookahead_slow_buff'] = torch.empty_like(fast_p)
|
|
param_state['lookahead_slow_buff'].copy_(fast_p)
|
|
slow = param_state['lookahead_slow_buff']
|
|
slow.add_(fast_p - slow, alpha=group['lookahead_alpha'])
|
|
fast_p.copy_(slow)
|
|
|
|
def sync_lookahead(self):
|
|
for group in self._base_optimizer.param_groups:
|
|
self.update_slow(group)
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
loss = self._base_optimizer.step(closure)
|
|
for group in self._base_optimizer.param_groups:
|
|
group['lookahead_step'] += 1
|
|
if group['lookahead_step'] % group['lookahead_k'] == 0:
|
|
self.update_slow(group)
|
|
return loss
|
|
|
|
def state_dict(self):
|
|
return self._base_optimizer.state_dict()
|
|
|
|
def load_state_dict(self, state_dict):
|
|
self._base_optimizer.load_state_dict(state_dict)
|
|
self.param_groups = self._base_optimizer.param_groups
|