You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/models/mobilevit.py

706 lines
27 KiB

""" MobileViT
Paper:
V1: `MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer` - https://arxiv.org/abs/2110.02178
V2: `Separable Self-attention for Mobile Vision Transformers` - https://arxiv.org/abs/2206.02680
MobileVitBlock and checkpoints adapted from https://github.com/apple/ml-cvnets (original copyright below)
License: https://github.com/apple/ml-cvnets/blob/main/LICENSE (Apple open source)
Rest of code, ByobNet, and Transformer block hacked together by / Copyright 2022, Ross Wightman
"""
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2020 Apple Inc. All Rights Reserved.
#
import math
from typing import Callable, Tuple, Optional
import torch
import torch.nn.functional as F
from torch import nn
from timm.layers import to_2tuple, make_divisible, GroupNorm1, ConvMlp, DropPath
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_module
from ._registry import register_model
from .byobnet import register_block, ByoBlockCfg, ByoModelCfg, ByobNet, LayerFn, num_groups
from .vision_transformer import Block as TransformerBlock
__all__ = []
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8),
'crop_pct': 0.9, 'interpolation': 'bicubic',
'mean': (0., 0., 0.), 'std': (1., 1., 1.),
'first_conv': 'stem.conv', 'classifier': 'head.fc',
'fixed_input_size': False,
**kwargs
}
default_cfgs = {
'mobilevit_xxs': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevit_xxs-ad385b40.pth'),
'mobilevit_xs': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevit_xs-8fbd6366.pth'),
'mobilevit_s': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevit_s-38a5a959.pth'),
'semobilevit_s': _cfg(),
'mobilevitv2_050': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_050-49951ee2.pth',
crop_pct=0.888),
'mobilevitv2_075': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_075-b5556ef6.pth',
crop_pct=0.888),
'mobilevitv2_100': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_100-e464ef3b.pth',
crop_pct=0.888),
'mobilevitv2_125': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_125-0ae35027.pth',
crop_pct=0.888),
'mobilevitv2_150': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_150-737c5019.pth',
crop_pct=0.888),
'mobilevitv2_175': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_175-16462ee2.pth',
crop_pct=0.888),
'mobilevitv2_200': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_200-b3422f67.pth',
crop_pct=0.888),
'mobilevitv2_150_in22ft1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_150_in22ft1k-0b555d7b.pth',
crop_pct=0.888),
'mobilevitv2_175_in22ft1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_175_in22ft1k-4117fa1f.pth',
crop_pct=0.888),
'mobilevitv2_200_in22ft1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_200_in22ft1k-1d7c8927.pth',
crop_pct=0.888),
'mobilevitv2_150_384_in22ft1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_150_384_in22ft1k-9e142854.pth',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
'mobilevitv2_175_384_in22ft1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_175_384_in22ft1k-059cbe56.pth',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
'mobilevitv2_200_384_in22ft1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_200_384_in22ft1k-32c87503.pth',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
}
def _inverted_residual_block(d, c, s, br=4.0):
# inverted residual is a bottleneck block with bottle_ratio > 1 applied to in_chs, linear output, gs=1 (depthwise)
return ByoBlockCfg(
type='bottle', d=d, c=c, s=s, gs=1, br=br,
block_kwargs=dict(bottle_in=True, linear_out=True))
def _mobilevit_block(d, c, s, transformer_dim, transformer_depth, patch_size=4, br=4.0):
# inverted residual + mobilevit blocks as per MobileViT network
return (
_inverted_residual_block(d=d, c=c, s=s, br=br),
ByoBlockCfg(
type='mobilevit', d=1, c=c, s=1,
block_kwargs=dict(
transformer_dim=transformer_dim,
transformer_depth=transformer_depth,
patch_size=patch_size)
)
)
def _mobilevitv2_block(d, c, s, transformer_depth, patch_size=2, br=2.0, transformer_br=0.5):
# inverted residual + mobilevit blocks as per MobileViT network
return (
_inverted_residual_block(d=d, c=c, s=s, br=br),
ByoBlockCfg(
type='mobilevit2', d=1, c=c, s=1, br=transformer_br, gs=1,
block_kwargs=dict(
transformer_depth=transformer_depth,
patch_size=patch_size)
)
)
def _mobilevitv2_cfg(multiplier=1.0):
chs = (64, 128, 256, 384, 512)
if multiplier != 1.0:
chs = tuple([int(c * multiplier) for c in chs])
cfg = ByoModelCfg(
blocks=(
_inverted_residual_block(d=1, c=chs[0], s=1, br=2.0),
_inverted_residual_block(d=2, c=chs[1], s=2, br=2.0),
_mobilevitv2_block(d=1, c=chs[2], s=2, transformer_depth=2),
_mobilevitv2_block(d=1, c=chs[3], s=2, transformer_depth=4),
_mobilevitv2_block(d=1, c=chs[4], s=2, transformer_depth=3),
),
stem_chs=int(32 * multiplier),
stem_type='3x3',
stem_pool='',
downsample='',
act_layer='silu',
)
return cfg
model_cfgs = dict(
mobilevit_xxs=ByoModelCfg(
blocks=(
_inverted_residual_block(d=1, c=16, s=1, br=2.0),
_inverted_residual_block(d=3, c=24, s=2, br=2.0),
_mobilevit_block(d=1, c=48, s=2, transformer_dim=64, transformer_depth=2, patch_size=2, br=2.0),
_mobilevit_block(d=1, c=64, s=2, transformer_dim=80, transformer_depth=4, patch_size=2, br=2.0),
_mobilevit_block(d=1, c=80, s=2, transformer_dim=96, transformer_depth=3, patch_size=2, br=2.0),
),
stem_chs=16,
stem_type='3x3',
stem_pool='',
downsample='',
act_layer='silu',
num_features=320,
),
mobilevit_xs=ByoModelCfg(
blocks=(
_inverted_residual_block(d=1, c=32, s=1),
_inverted_residual_block(d=3, c=48, s=2),
_mobilevit_block(d=1, c=64, s=2, transformer_dim=96, transformer_depth=2, patch_size=2),
_mobilevit_block(d=1, c=80, s=2, transformer_dim=120, transformer_depth=4, patch_size=2),
_mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=3, patch_size=2),
),
stem_chs=16,
stem_type='3x3',
stem_pool='',
downsample='',
act_layer='silu',
num_features=384,
),
mobilevit_s=ByoModelCfg(
blocks=(
_inverted_residual_block(d=1, c=32, s=1),
_inverted_residual_block(d=3, c=64, s=2),
_mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=2, patch_size=2),
_mobilevit_block(d=1, c=128, s=2, transformer_dim=192, transformer_depth=4, patch_size=2),
_mobilevit_block(d=1, c=160, s=2, transformer_dim=240, transformer_depth=3, patch_size=2),
),
stem_chs=16,
stem_type='3x3',
stem_pool='',
downsample='',
act_layer='silu',
num_features=640,
),
semobilevit_s=ByoModelCfg(
blocks=(
_inverted_residual_block(d=1, c=32, s=1),
_inverted_residual_block(d=3, c=64, s=2),
_mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=2, patch_size=2),
_mobilevit_block(d=1, c=128, s=2, transformer_dim=192, transformer_depth=4, patch_size=2),
_mobilevit_block(d=1, c=160, s=2, transformer_dim=240, transformer_depth=3, patch_size=2),
),
stem_chs=16,
stem_type='3x3',
stem_pool='',
downsample='',
attn_layer='se',
attn_kwargs=dict(rd_ratio=1/8),
num_features=640,
),
mobilevitv2_050=_mobilevitv2_cfg(.50),
mobilevitv2_075=_mobilevitv2_cfg(.75),
mobilevitv2_125=_mobilevitv2_cfg(1.25),
mobilevitv2_100=_mobilevitv2_cfg(1.0),
mobilevitv2_150=_mobilevitv2_cfg(1.5),
mobilevitv2_175=_mobilevitv2_cfg(1.75),
mobilevitv2_200=_mobilevitv2_cfg(2.0),
)
@register_notrace_module
class MobileVitBlock(nn.Module):
""" MobileViT block
Paper: https://arxiv.org/abs/2110.02178?context=cs.LG
"""
def __init__(
self,
in_chs: int,
out_chs: Optional[int] = None,
kernel_size: int = 3,
stride: int = 1,
bottle_ratio: float = 1.0,
group_size: Optional[int] = None,
dilation: Tuple[int, int] = (1, 1),
mlp_ratio: float = 2.0,
transformer_dim: Optional[int] = None,
transformer_depth: int = 2,
patch_size: int = 8,
num_heads: int = 4,
attn_drop: float = 0.,
drop: int = 0.,
no_fusion: bool = False,
drop_path_rate: float = 0.,
layers: LayerFn = None,
transformer_norm_layer: Callable = nn.LayerNorm,
**kwargs, # eat unused args
):
super(MobileVitBlock, self).__init__()
layers = layers or LayerFn()
groups = num_groups(group_size, in_chs)
out_chs = out_chs or in_chs
transformer_dim = transformer_dim or make_divisible(bottle_ratio * in_chs)
self.conv_kxk = layers.conv_norm_act(
in_chs, in_chs, kernel_size=kernel_size,
stride=stride, groups=groups, dilation=dilation[0])
self.conv_1x1 = nn.Conv2d(in_chs, transformer_dim, kernel_size=1, bias=False)
self.transformer = nn.Sequential(*[
TransformerBlock(
transformer_dim,
mlp_ratio=mlp_ratio,
num_heads=num_heads,
qkv_bias=True,
attn_drop=attn_drop,
drop=drop,
drop_path=drop_path_rate,
act_layer=layers.act,
norm_layer=transformer_norm_layer,
)
for _ in range(transformer_depth)
])
self.norm = transformer_norm_layer(transformer_dim)
self.conv_proj = layers.conv_norm_act(transformer_dim, out_chs, kernel_size=1, stride=1)
if no_fusion:
self.conv_fusion = None
else:
self.conv_fusion = layers.conv_norm_act(in_chs + out_chs, out_chs, kernel_size=kernel_size, stride=1)
self.patch_size = to_2tuple(patch_size)
self.patch_area = self.patch_size[0] * self.patch_size[1]
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
# Local representation
x = self.conv_kxk(x)
x = self.conv_1x1(x)
# Unfold (feature map -> patches)
patch_h, patch_w = self.patch_size
B, C, H, W = x.shape
new_h, new_w = math.ceil(H / patch_h) * patch_h, math.ceil(W / patch_w) * patch_w
num_patch_h, num_patch_w = new_h // patch_h, new_w // patch_w # n_h, n_w
num_patches = num_patch_h * num_patch_w # N
interpolate = False
if new_h != H or new_w != W:
# Note: Padding can be done, but then it needs to be handled in attention function.
x = F.interpolate(x, size=(new_h, new_w), mode="bilinear", align_corners=False)
interpolate = True
# [B, C, H, W] --> [B * C * n_h, n_w, p_h, p_w]
x = x.reshape(B * C * num_patch_h, patch_h, num_patch_w, patch_w).transpose(1, 2)
# [B * C * n_h, n_w, p_h, p_w] --> [BP, N, C] where P = p_h * p_w and N = n_h * n_w
x = x.reshape(B, C, num_patches, self.patch_area).transpose(1, 3).reshape(B * self.patch_area, num_patches, -1)
# Global representations
x = self.transformer(x)
x = self.norm(x)
# Fold (patch -> feature map)
# [B, P, N, C] --> [B*C*n_h, n_w, p_h, p_w]
x = x.contiguous().view(B, self.patch_area, num_patches, -1)
x = x.transpose(1, 3).reshape(B * C * num_patch_h, num_patch_w, patch_h, patch_w)
# [B*C*n_h, n_w, p_h, p_w] --> [B*C*n_h, p_h, n_w, p_w] --> [B, C, H, W]
x = x.transpose(1, 2).reshape(B, C, num_patch_h * patch_h, num_patch_w * patch_w)
if interpolate:
x = F.interpolate(x, size=(H, W), mode="bilinear", align_corners=False)
x = self.conv_proj(x)
if self.conv_fusion is not None:
x = self.conv_fusion(torch.cat((shortcut, x), dim=1))
return x
class LinearSelfAttention(nn.Module):
"""
This layer applies a self-attention with linear complexity, as described in `https://arxiv.org/abs/2206.02680`
This layer can be used for self- as well as cross-attention.
Args:
embed_dim (int): :math:`C` from an expected input of size :math:`(N, C, H, W)`
attn_drop (float): Dropout value for context scores. Default: 0.0
bias (bool): Use bias in learnable layers. Default: True
Shape:
- Input: :math:`(N, C, P, N)` where :math:`N` is the batch size, :math:`C` is the input channels,
:math:`P` is the number of pixels in the patch, and :math:`N` is the number of patches
- Output: same as the input
.. note::
For MobileViTv2, we unfold the feature map [B, C, H, W] into [B, C, P, N] where P is the number of pixels
in a patch and N is the number of patches. Because channel is the first dimension in this unfolded tensor,
we use point-wise convolution (instead of a linear layer). This avoids a transpose operation (which may be
expensive on resource-constrained devices) that may be required to convert the unfolded tensor from
channel-first to channel-last format in case of a linear layer.
"""
def __init__(
self,
embed_dim: int,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
bias: bool = True,
) -> None:
super().__init__()
self.embed_dim = embed_dim
self.qkv_proj = nn.Conv2d(
in_channels=embed_dim,
out_channels=1 + (2 * embed_dim),
bias=bias,
kernel_size=1,
)
self.attn_drop = nn.Dropout(attn_drop)
self.out_proj = nn.Conv2d(
in_channels=embed_dim,
out_channels=embed_dim,
bias=bias,
kernel_size=1,
)
self.out_drop = nn.Dropout(proj_drop)
def _forward_self_attn(self, x: torch.Tensor) -> torch.Tensor:
# [B, C, P, N] --> [B, h + 2d, P, N]
qkv = self.qkv_proj(x)
# Project x into query, key and value
# Query --> [B, 1, P, N]
# value, key --> [B, d, P, N]
query, key, value = qkv.split([1, self.embed_dim, self.embed_dim], dim=1)
# apply softmax along N dimension
context_scores = F.softmax(query, dim=-1)
context_scores = self.attn_drop(context_scores)
# Compute context vector
# [B, d, P, N] x [B, 1, P, N] -> [B, d, P, N] --> [B, d, P, 1]
context_vector = (key * context_scores).sum(dim=-1, keepdim=True)
# combine context vector with values
# [B, d, P, N] * [B, d, P, 1] --> [B, d, P, N]
out = F.relu(value) * context_vector.expand_as(value)
out = self.out_proj(out)
out = self.out_drop(out)
return out
@torch.jit.ignore()
def _forward_cross_attn(self, x: torch.Tensor, x_prev: Optional[torch.Tensor] = None) -> torch.Tensor:
# x --> [B, C, P, N]
# x_prev = [B, C, P, M]
batch_size, in_dim, kv_patch_area, kv_num_patches = x.shape
q_patch_area, q_num_patches = x.shape[-2:]
assert (
kv_patch_area == q_patch_area
), "The number of pixels in a patch for query and key_value should be the same"
# compute query, key, and value
# [B, C, P, M] --> [B, 1 + d, P, M]
qk = F.conv2d(
x_prev,
weight=self.qkv_proj.weight[:self.embed_dim + 1],
bias=self.qkv_proj.bias[:self.embed_dim + 1],
)
# [B, 1 + d, P, M] --> [B, 1, P, M], [B, d, P, M]
query, key = qk.split([1, self.embed_dim], dim=1)
# [B, C, P, N] --> [B, d, P, N]
value = F.conv2d(
x,
weight=self.qkv_proj.weight[self.embed_dim + 1],
bias=self.qkv_proj.bias[self.embed_dim + 1] if self.qkv_proj.bias is not None else None,
)
# apply softmax along M dimension
context_scores = F.softmax(query, dim=-1)
context_scores = self.attn_drop(context_scores)
# compute context vector
# [B, d, P, M] * [B, 1, P, M] -> [B, d, P, M] --> [B, d, P, 1]
context_vector = (key * context_scores).sum(dim=-1, keepdim=True)
# combine context vector with values
# [B, d, P, N] * [B, d, P, 1] --> [B, d, P, N]
out = F.relu(value) * context_vector.expand_as(value)
out = self.out_proj(out)
out = self.out_drop(out)
return out
def forward(self, x: torch.Tensor, x_prev: Optional[torch.Tensor] = None) -> torch.Tensor:
if x_prev is None:
return self._forward_self_attn(x)
else:
return self._forward_cross_attn(x, x_prev=x_prev)
class LinearTransformerBlock(nn.Module):
"""
This class defines the pre-norm transformer encoder with linear self-attention in `MobileViTv2 paper <>`_
Args:
embed_dim (int): :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, P, N)`
mlp_ratio (float): Inner dimension ratio of the FFN relative to embed_dim
drop (float): Dropout rate. Default: 0.0
attn_drop (float): Dropout rate for attention in multi-head attention. Default: 0.0
drop_path (float): Stochastic depth rate Default: 0.0
norm_layer (Callable): Normalization layer. Default: layer_norm_2d
Shape:
- Input: :math:`(B, C_{in}, P, N)` where :math:`B` is batch size, :math:`C_{in}` is input embedding dim,
:math:`P` is number of pixels in a patch, and :math:`N` is number of patches,
- Output: same shape as the input
"""
def __init__(
self,
embed_dim: int,
mlp_ratio: float = 2.0,
drop: float = 0.0,
attn_drop: float = 0.0,
drop_path: float = 0.0,
act_layer=None,
norm_layer=None,
) -> None:
super().__init__()
act_layer = act_layer or nn.SiLU
norm_layer = norm_layer or GroupNorm1
self.norm1 = norm_layer(embed_dim)
self.attn = LinearSelfAttention(embed_dim=embed_dim, attn_drop=attn_drop, proj_drop=drop)
self.drop_path1 = DropPath(drop_path)
self.norm2 = norm_layer(embed_dim)
self.mlp = ConvMlp(
in_features=embed_dim,
hidden_features=int(embed_dim * mlp_ratio),
act_layer=act_layer,
drop=drop)
self.drop_path2 = DropPath(drop_path)
def forward(self, x: torch.Tensor, x_prev: Optional[torch.Tensor] = None) -> torch.Tensor:
if x_prev is None:
# self-attention
x = x + self.drop_path1(self.attn(self.norm1(x)))
else:
# cross-attention
res = x
x = self.norm1(x) # norm
x = self.attn(x, x_prev) # attn
x = self.drop_path1(x) + res # residual
# Feed forward network
x = x + self.drop_path2(self.mlp(self.norm2(x)))
return x
@register_notrace_module
class MobileVitV2Block(nn.Module):
"""
This class defines the `MobileViTv2 block <>`_
"""
def __init__(
self,
in_chs: int,
out_chs: Optional[int] = None,
kernel_size: int = 3,
bottle_ratio: float = 1.0,
group_size: Optional[int] = 1,
dilation: Tuple[int, int] = (1, 1),
mlp_ratio: float = 2.0,
transformer_dim: Optional[int] = None,
transformer_depth: int = 2,
patch_size: int = 8,
attn_drop: float = 0.,
drop: int = 0.,
drop_path_rate: float = 0.,
layers: LayerFn = None,
transformer_norm_layer: Callable = GroupNorm1,
**kwargs, # eat unused args
):
super(MobileVitV2Block, self).__init__()
layers = layers or LayerFn()
groups = num_groups(group_size, in_chs)
out_chs = out_chs or in_chs
transformer_dim = transformer_dim or make_divisible(bottle_ratio * in_chs)
self.conv_kxk = layers.conv_norm_act(
in_chs, in_chs, kernel_size=kernel_size,
stride=1, groups=groups, dilation=dilation[0])
self.conv_1x1 = nn.Conv2d(in_chs, transformer_dim, kernel_size=1, bias=False)
self.transformer = nn.Sequential(*[
LinearTransformerBlock(
transformer_dim,
mlp_ratio=mlp_ratio,
attn_drop=attn_drop,
drop=drop,
drop_path=drop_path_rate,
act_layer=layers.act,
norm_layer=transformer_norm_layer
)
for _ in range(transformer_depth)
])
self.norm = transformer_norm_layer(transformer_dim)
self.conv_proj = layers.conv_norm_act(transformer_dim, out_chs, kernel_size=1, stride=1, apply_act=False)
self.patch_size = to_2tuple(patch_size)
self.patch_area = self.patch_size[0] * self.patch_size[1]
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, C, H, W = x.shape
patch_h, patch_w = self.patch_size
new_h, new_w = math.ceil(H / patch_h) * patch_h, math.ceil(W / patch_w) * patch_w
num_patch_h, num_patch_w = new_h // patch_h, new_w // patch_w # n_h, n_w
num_patches = num_patch_h * num_patch_w # N
if new_h != H or new_w != W:
x = F.interpolate(x, size=(new_h, new_w), mode="bilinear", align_corners=True)
# Local representation
x = self.conv_kxk(x)
x = self.conv_1x1(x)
# Unfold (feature map -> patches), [B, C, H, W] -> [B, C, P, N]
C = x.shape[1]
x = x.reshape(B, C, num_patch_h, patch_h, num_patch_w, patch_w).permute(0, 1, 3, 5, 2, 4)
x = x.reshape(B, C, -1, num_patches)
# Global representations
x = self.transformer(x)
x = self.norm(x)
# Fold (patches -> feature map), [B, C, P, N] --> [B, C, H, W]
x = x.reshape(B, C, patch_h, patch_w, num_patch_h, num_patch_w).permute(0, 1, 4, 2, 5, 3)
x = x.reshape(B, C, num_patch_h * patch_h, num_patch_w * patch_w)
x = self.conv_proj(x)
return x
register_block('mobilevit', MobileVitBlock)
register_block('mobilevit2', MobileVitV2Block)
def _create_mobilevit(variant, cfg_variant=None, pretrained=False, **kwargs):
return build_model_with_cfg(
ByobNet, variant, pretrained,
model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant],
feature_cfg=dict(flatten_sequential=True),
**kwargs)
def _create_mobilevit2(variant, cfg_variant=None, pretrained=False, **kwargs):
return build_model_with_cfg(
ByobNet, variant, pretrained,
model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant],
feature_cfg=dict(flatten_sequential=True),
**kwargs)
@register_model
def mobilevit_xxs(pretrained=False, **kwargs):
return _create_mobilevit('mobilevit_xxs', pretrained=pretrained, **kwargs)
@register_model
def mobilevit_xs(pretrained=False, **kwargs):
return _create_mobilevit('mobilevit_xs', pretrained=pretrained, **kwargs)
@register_model
def mobilevit_s(pretrained=False, **kwargs):
return _create_mobilevit('mobilevit_s', pretrained=pretrained, **kwargs)
@register_model
def semobilevit_s(pretrained=False, **kwargs):
return _create_mobilevit('semobilevit_s', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_050(pretrained=False, **kwargs):
return _create_mobilevit('mobilevitv2_050', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_075(pretrained=False, **kwargs):
return _create_mobilevit('mobilevitv2_075', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_100(pretrained=False, **kwargs):
return _create_mobilevit('mobilevitv2_100', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_125(pretrained=False, **kwargs):
return _create_mobilevit('mobilevitv2_125', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_150(pretrained=False, **kwargs):
return _create_mobilevit('mobilevitv2_150', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_175(pretrained=False, **kwargs):
return _create_mobilevit('mobilevitv2_175', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_200(pretrained=False, **kwargs):
return _create_mobilevit('mobilevitv2_200', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_150_in22ft1k(pretrained=False, **kwargs):
return _create_mobilevit(
'mobilevitv2_150_in22ft1k', cfg_variant='mobilevitv2_150', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_175_in22ft1k(pretrained=False, **kwargs):
return _create_mobilevit(
'mobilevitv2_175_in22ft1k', cfg_variant='mobilevitv2_175', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_200_in22ft1k(pretrained=False, **kwargs):
return _create_mobilevit(
'mobilevitv2_200_in22ft1k', cfg_variant='mobilevitv2_200', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_150_384_in22ft1k(pretrained=False, **kwargs):
return _create_mobilevit(
'mobilevitv2_150_384_in22ft1k', cfg_variant='mobilevitv2_150', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_175_384_in22ft1k(pretrained=False, **kwargs):
return _create_mobilevit(
'mobilevitv2_175_384_in22ft1k', cfg_variant='mobilevitv2_175', pretrained=pretrained, **kwargs)
@register_model
def mobilevitv2_200_384_in22ft1k(pretrained=False, **kwargs):
return _create_mobilevit(
'mobilevitv2_200_384_in22ft1k', cfg_variant='mobilevitv2_200', pretrained=pretrained, **kwargs)