You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
5.0 KiB
130 lines
5.0 KiB
import math
|
|
import torch
|
|
from torch.utils.data import Sampler
|
|
import torch.distributed as dist
|
|
|
|
|
|
class OrderedDistributedSampler(Sampler):
|
|
"""Sampler that restricts data loading to a subset of the dataset.
|
|
It is especially useful in conjunction with
|
|
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
|
|
process can pass a DistributedSampler instance as a DataLoader sampler,
|
|
and load a subset of the original dataset that is exclusive to it.
|
|
.. note::
|
|
Dataset is assumed to be of constant size.
|
|
Arguments:
|
|
dataset: Dataset used for sampling.
|
|
num_replicas (optional): Number of processes participating in
|
|
distributed training.
|
|
rank (optional): Rank of the current process within num_replicas.
|
|
"""
|
|
|
|
def __init__(self, dataset, num_replicas=None, rank=None):
|
|
if num_replicas is None:
|
|
if not dist.is_available():
|
|
raise RuntimeError("Requires distributed package to be available")
|
|
num_replicas = dist.get_world_size()
|
|
if rank is None:
|
|
if not dist.is_available():
|
|
raise RuntimeError("Requires distributed package to be available")
|
|
rank = dist.get_rank()
|
|
self.dataset = dataset
|
|
self.num_replicas = num_replicas
|
|
self.rank = rank
|
|
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
|
|
self.total_size = self.num_samples * self.num_replicas
|
|
|
|
def __iter__(self):
|
|
indices = list(range(len(self.dataset)))
|
|
|
|
# add extra samples to make it evenly divisible
|
|
indices += indices[:(self.total_size - len(indices))]
|
|
assert len(indices) == self.total_size
|
|
|
|
# subsample
|
|
indices = indices[self.rank:self.total_size:self.num_replicas]
|
|
assert len(indices) == self.num_samples
|
|
|
|
return iter(indices)
|
|
|
|
def __len__(self):
|
|
return self.num_samples
|
|
|
|
|
|
class RepeatAugSampler(Sampler):
|
|
"""Sampler that restricts data loading to a subset of the dataset for distributed,
|
|
with repeated augmentation.
|
|
It ensures that different each augmented version of a sample will be visible to a
|
|
different process (GPU). Heavily based on torch.utils.data.DistributedSampler
|
|
|
|
This sampler was taken from https://github.com/facebookresearch/deit/blob/0c4b8f60/samplers.py
|
|
Used in
|
|
Copyright (c) 2015-present, Facebook, Inc.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dataset,
|
|
num_replicas=None,
|
|
rank=None,
|
|
shuffle=True,
|
|
num_repeats=3,
|
|
selected_round=256,
|
|
selected_ratio=0,
|
|
):
|
|
if num_replicas is None:
|
|
if not dist.is_available():
|
|
raise RuntimeError("Requires distributed package to be available")
|
|
num_replicas = dist.get_world_size()
|
|
if rank is None:
|
|
if not dist.is_available():
|
|
raise RuntimeError("Requires distributed package to be available")
|
|
rank = dist.get_rank()
|
|
self.dataset = dataset
|
|
self.num_replicas = num_replicas
|
|
self.rank = rank
|
|
self.shuffle = shuffle
|
|
self.num_repeats = num_repeats
|
|
self.epoch = 0
|
|
self.num_samples = int(math.ceil(len(self.dataset) * num_repeats / self.num_replicas))
|
|
self.total_size = self.num_samples * self.num_replicas
|
|
# Determine the number of samples to select per epoch for each rank.
|
|
# num_selected logic defaults to be the same as original RASampler impl, but this one can be tweaked
|
|
# via selected_ratio and selected_round args.
|
|
selected_ratio = selected_ratio or num_replicas # ratio to reduce selected samples by, num_replicas if 0
|
|
if selected_round:
|
|
self.num_selected_samples = int(math.floor(
|
|
len(self.dataset) // selected_round * selected_round / selected_ratio))
|
|
else:
|
|
self.num_selected_samples = int(math.ceil(len(self.dataset) / selected_ratio))
|
|
|
|
def __iter__(self):
|
|
# deterministically shuffle based on epoch
|
|
g = torch.Generator()
|
|
g.manual_seed(self.epoch)
|
|
if self.shuffle:
|
|
indices = torch.randperm(len(self.dataset), generator=g)
|
|
else:
|
|
indices = torch.arange(start=0, end=len(self.dataset))
|
|
|
|
# produce repeats e.g. [0, 0, 0, 1, 1, 1, 2, 2, 2....]
|
|
indices = torch.repeat_interleave(indices, repeats=self.num_repeats, dim=0).tolist()
|
|
# add extra samples to make it evenly divisible
|
|
padding_size = self.total_size - len(indices)
|
|
if padding_size > 0:
|
|
indices += indices[:padding_size]
|
|
assert len(indices) == self.total_size
|
|
|
|
# subsample per rank
|
|
indices = indices[self.rank:self.total_size:self.num_replicas]
|
|
assert len(indices) == self.num_samples
|
|
|
|
# return up to num selected samples
|
|
return iter(indices[:self.num_selected_samples])
|
|
|
|
def __len__(self):
|
|
return self.num_selected_samples
|
|
|
|
def set_epoch(self, epoch):
|
|
self.epoch = epoch
|