You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
617 lines
22 KiB
617 lines
22 KiB
# --------------------------------------------------------
|
|
# FocalNets -- Focal Modulation Networks
|
|
# Copyright (c) 2022 Microsoft
|
|
# Licensed under The MIT License [see LICENSE for details]
|
|
# Written by Jianwei Yang (jianwyan@microsoft.com)
|
|
# --------------------------------------------------------
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint as checkpoint
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert
|
|
from ._builder import build_model_with_cfg
|
|
from ._features_fx import register_notrace_function
|
|
from ._registry import register_model
|
|
|
|
__all__ = ['FocalNet']
|
|
|
|
|
|
class FocalModulation(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
focal_window,
|
|
focal_level,
|
|
focal_factor=2,
|
|
bias=True,
|
|
proj_drop=0.,
|
|
use_postln_in_modulation=False,
|
|
normalize_modulator=False,
|
|
):
|
|
super().__init__()
|
|
|
|
self.dim = dim
|
|
self.focal_window = focal_window
|
|
self.focal_level = focal_level
|
|
self.focal_factor = focal_factor
|
|
self.use_postln_in_modulation = use_postln_in_modulation
|
|
self.normalize_modulator = normalize_modulator
|
|
|
|
self.f = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias=bias)
|
|
self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)
|
|
|
|
self.act = nn.GELU()
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
self.focal_layers = nn.ModuleList()
|
|
|
|
self.kernel_sizes = []
|
|
for k in range(self.focal_level):
|
|
kernel_size = self.focal_factor * k + self.focal_window
|
|
self.focal_layers.append(
|
|
nn.Sequential(
|
|
nn.Conv2d(
|
|
dim, dim, kernel_size=kernel_size, stride=1,
|
|
groups=dim, padding=kernel_size // 2, bias=False),
|
|
nn.GELU(),
|
|
)
|
|
)
|
|
self.kernel_sizes.append(kernel_size)
|
|
if self.use_postln_in_modulation:
|
|
self.ln = nn.LayerNorm(dim)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Args:
|
|
x: input features with shape of (B, H, W, C)
|
|
"""
|
|
C = x.shape[-1]
|
|
|
|
# pre linear projection
|
|
x = self.f(x).permute(0, 3, 1, 2).contiguous()
|
|
q, ctx, self.gates = torch.split(x, (C, C, self.focal_level + 1), 1)
|
|
|
|
# context aggreation
|
|
ctx_all = 0
|
|
for l in range(self.focal_level):
|
|
ctx = self.focal_layers[l](ctx)
|
|
ctx_all = ctx_all + ctx * self.gates[:, l:l + 1]
|
|
ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
|
|
ctx_all = ctx_all + ctx_global * self.gates[:, self.focal_level:]
|
|
|
|
# normalize context
|
|
if self.normalize_modulator:
|
|
ctx_all = ctx_all / (self.focal_level + 1)
|
|
|
|
# focal modulation
|
|
self.modulator = self.h(ctx_all)
|
|
x_out = q * self.modulator
|
|
x_out = x_out.permute(0, 2, 3, 1).contiguous()
|
|
if self.use_postln_in_modulation:
|
|
x_out = self.ln(x_out)
|
|
|
|
# post linear porjection
|
|
x_out = self.proj(x_out)
|
|
x_out = self.proj_drop(x_out)
|
|
return x_out
|
|
|
|
def extra_repr(self) -> str:
|
|
return f'dim={self.dim}'
|
|
|
|
|
|
class FocalNetBlock(nn.Module):
|
|
r""" Focal Modulation Network Block.
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
input_resolution (tuple[int]): Input resulotion.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
drop (float, optional): Dropout rate. Default: 0.0
|
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
focal_level (int): Number of focal levels.
|
|
focal_window (int): Focal window size at first focal level
|
|
layerscale_value (float): Initial layerscale value
|
|
use_postln (bool): Whether to use layernorm after modulation
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
input_resolution,
|
|
mlp_ratio=4.,
|
|
drop=0.,
|
|
drop_path=0.,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.LayerNorm,
|
|
focal_level=1,
|
|
focal_window=3,
|
|
layerscale_value=1e-4,
|
|
use_postln=False,
|
|
use_postln_in_modulation=False,
|
|
normalize_modulator=False,
|
|
):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.input_resolution = input_resolution
|
|
self.mlp_ratio = mlp_ratio
|
|
|
|
self.focal_window = focal_window
|
|
self.focal_level = focal_level
|
|
self.use_postln = use_postln
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
self.modulation = FocalModulation(
|
|
dim,
|
|
proj_drop=drop,
|
|
focal_window=focal_window,
|
|
focal_level=self.focal_level,
|
|
use_postln_in_modulation=use_postln_in_modulation,
|
|
normalize_modulator=normalize_modulator,
|
|
)
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
)
|
|
|
|
self.gamma_1 = 1.0
|
|
self.gamma_2 = 1.0
|
|
if layerscale_value is not None:
|
|
self.gamma_1 = nn.Parameter(layerscale_value * torch.ones(dim))
|
|
self.gamma_2 = nn.Parameter(layerscale_value * torch.ones(dim))
|
|
|
|
self.H = None
|
|
self.W = None
|
|
|
|
def forward(self, x):
|
|
H, W = self.H, self.W
|
|
B, L, C = x.shape
|
|
shortcut = x
|
|
|
|
# Focal Modulation
|
|
x = x if self.use_postln else self.norm1(x)
|
|
x = x.view(B, H, W, C)
|
|
x = self.modulation(x).view(B, H * W, C)
|
|
x = x if not self.use_postln else self.norm1(x)
|
|
|
|
# FFN
|
|
x = shortcut + self.drop_path(self.gamma_1 * x)
|
|
x = x + self.drop_path(self.gamma_2 * (self.norm2(self.mlp(x)) if self.use_postln else self.mlp(self.norm2(x))))
|
|
|
|
return x
|
|
|
|
def extra_repr(self) -> str:
|
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, " \
|
|
f"mlp_ratio={self.mlp_ratio}"
|
|
|
|
|
|
class BasicLayer(nn.Module):
|
|
""" A basic Focal Transformer layer for one stage.
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
input_resolution (tuple[int]): Input resolution.
|
|
depth (int): Number of blocks.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
drop (float, optional): Dropout rate. Default: 0.0
|
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
|
focal_level (int): Number of focal levels
|
|
focal_window (int): Focal window size at first focal level
|
|
layerscale_value (float): Initial layerscale value
|
|
use_postln (bool): Whether to use layer norm after modulation
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
out_dim,
|
|
input_resolution,
|
|
depth,
|
|
mlp_ratio=4.,
|
|
drop=0.,
|
|
drop_path=0.,
|
|
norm_layer=nn.LayerNorm,
|
|
downsample=None,
|
|
use_checkpoint=False,
|
|
focal_level=1,
|
|
focal_window=1,
|
|
use_conv_embed=False,
|
|
layerscale_value=1e-4,
|
|
use_postln=False,
|
|
use_postln_in_modulation=False,
|
|
normalize_modulator=False
|
|
):
|
|
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.input_resolution = input_resolution
|
|
self.depth = depth
|
|
self.use_checkpoint = use_checkpoint
|
|
|
|
# build blocks
|
|
self.blocks = nn.ModuleList([
|
|
FocalNetBlock(
|
|
dim=dim,
|
|
input_resolution=input_resolution,
|
|
mlp_ratio=mlp_ratio,
|
|
drop=drop,
|
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
|
norm_layer=norm_layer,
|
|
focal_level=focal_level,
|
|
focal_window=focal_window,
|
|
layerscale_value=layerscale_value,
|
|
use_postln=use_postln,
|
|
use_postln_in_modulation=use_postln_in_modulation,
|
|
normalize_modulator=normalize_modulator,
|
|
)
|
|
for i in range(depth)])
|
|
|
|
if downsample is not None:
|
|
self.downsample = downsample(
|
|
img_size=input_resolution,
|
|
patch_size=2,
|
|
in_chans=dim,
|
|
embed_dim=out_dim,
|
|
use_conv_embed=use_conv_embed,
|
|
norm_layer=norm_layer,
|
|
is_stem=False
|
|
)
|
|
else:
|
|
self.downsample = None
|
|
|
|
def forward(self, x, H, W):
|
|
for blk in self.blocks:
|
|
blk.H, blk.W = H, W
|
|
if self.use_checkpoint:
|
|
x = checkpoint.checkpoint(blk, x)
|
|
else:
|
|
x = blk(x)
|
|
|
|
if self.downsample is not None:
|
|
x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W)
|
|
x, Ho, Wo = self.downsample(x)
|
|
else:
|
|
Ho, Wo = H, W
|
|
return x, Ho, Wo
|
|
|
|
def extra_repr(self) -> str:
|
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
r""" Image to Patch Embedding
|
|
|
|
Args:
|
|
img_size (int): Image size. Default: 224.
|
|
patch_size (int): Patch token size. Default: 4.
|
|
in_chans (int): Number of input image channels. Default: 3.
|
|
embed_dim (int): Number of linear projection output channels. Default: 96.
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
img_size=(224, 224),
|
|
patch_size=4,
|
|
in_chans=3,
|
|
embed_dim=96,
|
|
use_conv_embed=False,
|
|
norm_layer=None,
|
|
is_stem=False,
|
|
):
|
|
super().__init__()
|
|
patch_size = to_2tuple(patch_size)
|
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
|
self.img_size = img_size
|
|
self.patch_size = patch_size
|
|
self.patches_resolution = patches_resolution
|
|
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
|
|
|
self.in_chans = in_chans
|
|
self.embed_dim = embed_dim
|
|
|
|
padding = 0
|
|
kernel_size = patch_size
|
|
stride = patch_size
|
|
if use_conv_embed:
|
|
# if we choose to use conv embedding, then we treat the stem and non-stem differently
|
|
if is_stem:
|
|
kernel_size = 7
|
|
padding = 2
|
|
stride = 4
|
|
else:
|
|
kernel_size = 3
|
|
padding = 1
|
|
stride = 2
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
|
|
|
|
if norm_layer is not None:
|
|
self.norm = norm_layer(embed_dim)
|
|
else:
|
|
self.norm = None
|
|
|
|
def forward(self, x):
|
|
B, C, H, W = x.shape
|
|
x = self.proj(x)
|
|
H, W = x.shape[2:]
|
|
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
|
|
if self.norm is not None:
|
|
x = self.norm(x)
|
|
return x, H, W
|
|
|
|
|
|
class FocalNet(nn.Module):
|
|
r""" Focal Modulation Networks (FocalNets)
|
|
|
|
Args:
|
|
img_size (int | tuple(int)): Input image size. Default 224
|
|
patch_size (int | tuple(int)): Patch size. Default: 4
|
|
in_chans (int): Number of input image channels. Default: 3
|
|
num_classes (int): Number of classes for classification head. Default: 1000
|
|
embed_dim (int): Patch embedding dimension. Default: 96
|
|
depths (tuple(int)): Depth of each Focal Transformer layer.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
|
drop_rate (float): Dropout rate. Default: 0
|
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
|
focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level.
|
|
Default: [1, 1, 1, 1]
|
|
focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1]
|
|
use_conv_embed (bool): Whether to use convolutional embedding.
|
|
layerscale_value (float): Value for layer scale. Default: 1e-4
|
|
use_postln (bool): Whether to use layernorm after modulation (it helps stablize training of large models)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
img_size=224,
|
|
patch_size=4,
|
|
in_chans=3,
|
|
num_classes=1000,
|
|
embed_dim=96,
|
|
depths=[2, 2, 6, 2],
|
|
mlp_ratio=4.,
|
|
drop_rate=0.,
|
|
drop_path_rate=0.1,
|
|
norm_layer=nn.LayerNorm,
|
|
patch_norm=True,
|
|
use_checkpoint=False,
|
|
focal_levels=[2, 2, 2, 2],
|
|
focal_windows=[3, 3, 3, 3],
|
|
use_conv_embed=False,
|
|
layerscale_value=None,
|
|
use_postln=False,
|
|
use_postln_in_modulation=False,
|
|
normalize_modulator=False,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
|
|
self.num_layers = len(depths)
|
|
embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)]
|
|
|
|
self.num_classes = num_classes
|
|
self.embed_dim = embed_dim
|
|
self.patch_norm = patch_norm
|
|
self.num_features = embed_dim[-1]
|
|
self.mlp_ratio = mlp_ratio
|
|
|
|
# split image into patches using either non-overlapped embedding or overlapped embedding
|
|
self.patch_embed = PatchEmbed(
|
|
img_size=to_2tuple(img_size),
|
|
patch_size=patch_size,
|
|
in_chans=in_chans,
|
|
embed_dim=embed_dim[0],
|
|
use_conv_embed=use_conv_embed,
|
|
norm_layer=norm_layer if self.patch_norm else None,
|
|
is_stem=True
|
|
)
|
|
|
|
num_patches = self.patch_embed.num_patches
|
|
patches_resolution = self.patch_embed.patches_resolution
|
|
self.patches_resolution = patches_resolution
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
# stochastic depth
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
|
|
|
# build layers
|
|
self.layers = nn.ModuleList()
|
|
for i_layer in range(self.num_layers):
|
|
layer = BasicLayer(
|
|
dim=embed_dim[i_layer],
|
|
out_dim=embed_dim[i_layer + 1] if (i_layer < self.num_layers - 1) else None,
|
|
input_resolution=(
|
|
patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)),
|
|
depth=depths[i_layer],
|
|
mlp_ratio=self.mlp_ratio,
|
|
drop=drop_rate,
|
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
|
norm_layer=norm_layer,
|
|
downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
|
|
focal_level=focal_levels[i_layer],
|
|
focal_window=focal_windows[i_layer],
|
|
use_conv_embed=use_conv_embed,
|
|
use_checkpoint=use_checkpoint,
|
|
layerscale_value=layerscale_value,
|
|
use_postln=use_postln,
|
|
use_postln_in_modulation=use_postln_in_modulation,
|
|
normalize_modulator=normalize_modulator
|
|
)
|
|
self.layers.append(layer)
|
|
|
|
self.norm = norm_layer(self.num_features)
|
|
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {''}
|
|
|
|
def forward_features(self, x):
|
|
x, H, W = self.patch_embed(x)
|
|
x = self.pos_drop(x)
|
|
|
|
for layer in self.layers:
|
|
x, H, W = layer(x, H, W)
|
|
x = self.norm(x) # B L C
|
|
x = self.avgpool(x.transpose(1, 2)) # B C 1
|
|
x = torch.flatten(x, 1)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.head(x)
|
|
return x
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url,
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = {
|
|
"focalnet_tiny_srf": _cfg(),
|
|
"focalnet_small_srf": _cfg(url="https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth"),
|
|
"focalnet_base_srf": _cfg(),
|
|
"focalnet_tiny_lrf": _cfg(),
|
|
"focalnet_small_lrf": _cfg(),
|
|
"focalnet_base_lrf": _cfg(url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth'),
|
|
"focalnet_large_fl3": _cfg(url='https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', input_size=(3, 384, 384), num_classes=21842),
|
|
"focalnet_large_fl4": _cfg(url="https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", input_size=(3, 384, 384), num_classes=21842),
|
|
}
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model):
|
|
out_dict = {}
|
|
if 'model' in state_dict:
|
|
# For deit models
|
|
state_dict = state_dict['model']
|
|
for k, v in state_dict.items():
|
|
if any([n in k for n in ('relative_position_index', 'relative_coords_table')]):
|
|
continue # skip buffers that should not be persistent
|
|
out_dict[k] = v
|
|
return out_dict
|
|
|
|
|
|
def _create_focalnet(variant, pretrained=False, **kwargs):
|
|
model = build_model_with_cfg(
|
|
FocalNet, variant, pretrained,
|
|
pretrained_filter_fn=checkpoint_filter_fn,
|
|
**kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def focalnet_tiny_srf(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)
|
|
return _create_focalnet('focalnet_tiny_srf', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def focalnet_small_srf(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)
|
|
return _create_focalnet('focalnet_small_srf', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def focalnet_base_srf(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)
|
|
return _create_focalnet('focalnet_base_srf', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def focalnet_tiny_lrf(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
|
|
return _create_focalnet('focalnet_tiny_lrf', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def focalnet_small_lrf(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
|
|
return _create_focalnet('focalnet_small_lrf', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def focalnet_base_lrf(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], **kwargs)
|
|
return _create_focalnet('focalnet_base_lrf', pretrained=pretrained, **model_kwargs)
|
|
|
|
# FocalNet large+ models
|
|
@register_model
|
|
def focalnet_large_fl3(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[3, 3, 3, 3], **kwargs)
|
|
return _create_focalnet('focalnet_large_fl3', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def focalnet_large_fl4(pretrained=False, **kwargs):
|
|
model_kwargs = dict(
|
|
depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[4, 4, 4, 4],
|
|
use_conv_embed=True, layerscale_value=1e-4, **kwargs)
|
|
return _create_focalnet('focalnet_large_fl4', pretrained=pretrained, **model_kwargs)
|
|
|
|
#
|
|
# @register_model
|
|
# def focalnet_large_fl4(pretrained=False, **kwargs):
|
|
# model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[4, 4, 4, 4], **kwargs)
|
|
# return _create_focalnet('focalnet_large_fl4', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
@register_model
|
|
def focalnet_xlarge_fl3(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[3, 3, 3, 3], **kwargs)
|
|
return _create_focalnet('focalnet_xlarge_fl3', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def focalnet_xlarge_fl4(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[4, 4, 4, 4], **kwargs)
|
|
return _create_focalnet('focalnet_xlarge_fl4', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def focalnet_huge_fl3(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[3, 3, 3, 3], **kwargs)
|
|
return _create_focalnet('focalnet_huge_fl3', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def focalnet_huge_fl4(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[4, 4, 4, 4], **kwargs)
|
|
return _create_focalnet('focalnet_huge_fl4', pretrained=pretrained, **model_kwargs)
|
|
|