You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
306 lines
10 KiB
306 lines
10 KiB
""" Pytorch Inception-V4 implementation
|
|
Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is
|
|
based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License)
|
|
"""
|
|
from .helpers import load_pretrained
|
|
from .adaptive_avgmax_pool import *
|
|
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
|
|
|
_models = ['inception_v4']
|
|
__all__ = ['InceptionV4'] + _models
|
|
|
|
default_cfgs = {
|
|
'inception_v4': {
|
|
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/inceptionv4-8e4777a0.pth',
|
|
'num_classes': 1001, 'input_size': (3, 299, 299), 'pool_size': (8, 8),
|
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
|
'first_conv': 'features.0.conv', 'classifier': 'last_linear',
|
|
}
|
|
}
|
|
|
|
|
|
class BasicConv2d(nn.Module):
|
|
def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0):
|
|
super(BasicConv2d, self).__init__()
|
|
self.conv = nn.Conv2d(
|
|
in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
|
|
self.bn = nn.BatchNorm2d(out_planes, eps=0.001)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
x = self.relu(x)
|
|
return x
|
|
|
|
|
|
class Mixed_3a(nn.Module):
|
|
def __init__(self):
|
|
super(Mixed_3a, self).__init__()
|
|
self.maxpool = nn.MaxPool2d(3, stride=2)
|
|
self.conv = BasicConv2d(64, 96, kernel_size=3, stride=2)
|
|
|
|
def forward(self, x):
|
|
x0 = self.maxpool(x)
|
|
x1 = self.conv(x)
|
|
out = torch.cat((x0, x1), 1)
|
|
return out
|
|
|
|
|
|
class Mixed_4a(nn.Module):
|
|
def __init__(self):
|
|
super(Mixed_4a, self).__init__()
|
|
|
|
self.branch0 = nn.Sequential(
|
|
BasicConv2d(160, 64, kernel_size=1, stride=1),
|
|
BasicConv2d(64, 96, kernel_size=3, stride=1)
|
|
)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
BasicConv2d(160, 64, kernel_size=1, stride=1),
|
|
BasicConv2d(64, 64, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
BasicConv2d(64, 64, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
|
BasicConv2d(64, 96, kernel_size=(3, 3), stride=1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
out = torch.cat((x0, x1), 1)
|
|
return out
|
|
|
|
|
|
class Mixed_5a(nn.Module):
|
|
def __init__(self):
|
|
super(Mixed_5a, self).__init__()
|
|
self.conv = BasicConv2d(192, 192, kernel_size=3, stride=2)
|
|
self.maxpool = nn.MaxPool2d(3, stride=2)
|
|
|
|
def forward(self, x):
|
|
x0 = self.conv(x)
|
|
x1 = self.maxpool(x)
|
|
out = torch.cat((x0, x1), 1)
|
|
return out
|
|
|
|
|
|
class Inception_A(nn.Module):
|
|
def __init__(self):
|
|
super(Inception_A, self).__init__()
|
|
self.branch0 = BasicConv2d(384, 96, kernel_size=1, stride=1)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
BasicConv2d(384, 64, kernel_size=1, stride=1),
|
|
BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1)
|
|
)
|
|
|
|
self.branch2 = nn.Sequential(
|
|
BasicConv2d(384, 64, kernel_size=1, stride=1),
|
|
BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1),
|
|
BasicConv2d(96, 96, kernel_size=3, stride=1, padding=1)
|
|
)
|
|
|
|
self.branch3 = nn.Sequential(
|
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
|
BasicConv2d(384, 96, kernel_size=1, stride=1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
x2 = self.branch2(x)
|
|
x3 = self.branch3(x)
|
|
out = torch.cat((x0, x1, x2, x3), 1)
|
|
return out
|
|
|
|
|
|
class Reduction_A(nn.Module):
|
|
def __init__(self):
|
|
super(Reduction_A, self).__init__()
|
|
self.branch0 = BasicConv2d(384, 384, kernel_size=3, stride=2)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
BasicConv2d(384, 192, kernel_size=1, stride=1),
|
|
BasicConv2d(192, 224, kernel_size=3, stride=1, padding=1),
|
|
BasicConv2d(224, 256, kernel_size=3, stride=2)
|
|
)
|
|
|
|
self.branch2 = nn.MaxPool2d(3, stride=2)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
x2 = self.branch2(x)
|
|
out = torch.cat((x0, x1, x2), 1)
|
|
return out
|
|
|
|
|
|
class Inception_B(nn.Module):
|
|
def __init__(self):
|
|
super(Inception_B, self).__init__()
|
|
self.branch0 = BasicConv2d(1024, 384, kernel_size=1, stride=1)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
BasicConv2d(1024, 192, kernel_size=1, stride=1),
|
|
BasicConv2d(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
BasicConv2d(224, 256, kernel_size=(7, 1), stride=1, padding=(3, 0))
|
|
)
|
|
|
|
self.branch2 = nn.Sequential(
|
|
BasicConv2d(1024, 192, kernel_size=1, stride=1),
|
|
BasicConv2d(192, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
|
BasicConv2d(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
BasicConv2d(224, 224, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
|
BasicConv2d(224, 256, kernel_size=(1, 7), stride=1, padding=(0, 3))
|
|
)
|
|
|
|
self.branch3 = nn.Sequential(
|
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
|
BasicConv2d(1024, 128, kernel_size=1, stride=1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
x2 = self.branch2(x)
|
|
x3 = self.branch3(x)
|
|
out = torch.cat((x0, x1, x2, x3), 1)
|
|
return out
|
|
|
|
|
|
class Reduction_B(nn.Module):
|
|
def __init__(self):
|
|
super(Reduction_B, self).__init__()
|
|
|
|
self.branch0 = nn.Sequential(
|
|
BasicConv2d(1024, 192, kernel_size=1, stride=1),
|
|
BasicConv2d(192, 192, kernel_size=3, stride=2)
|
|
)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
BasicConv2d(1024, 256, kernel_size=1, stride=1),
|
|
BasicConv2d(256, 256, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
BasicConv2d(256, 320, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
|
BasicConv2d(320, 320, kernel_size=3, stride=2)
|
|
)
|
|
|
|
self.branch2 = nn.MaxPool2d(3, stride=2)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
x2 = self.branch2(x)
|
|
out = torch.cat((x0, x1, x2), 1)
|
|
return out
|
|
|
|
|
|
class Inception_C(nn.Module):
|
|
def __init__(self):
|
|
super(Inception_C, self).__init__()
|
|
|
|
self.branch0 = BasicConv2d(1536, 256, kernel_size=1, stride=1)
|
|
|
|
self.branch1_0 = BasicConv2d(1536, 384, kernel_size=1, stride=1)
|
|
self.branch1_1a = BasicConv2d(384, 256, kernel_size=(1, 3), stride=1, padding=(0, 1))
|
|
self.branch1_1b = BasicConv2d(384, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
|
|
|
self.branch2_0 = BasicConv2d(1536, 384, kernel_size=1, stride=1)
|
|
self.branch2_1 = BasicConv2d(384, 448, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
|
self.branch2_2 = BasicConv2d(448, 512, kernel_size=(1, 3), stride=1, padding=(0, 1))
|
|
self.branch2_3a = BasicConv2d(512, 256, kernel_size=(1, 3), stride=1, padding=(0, 1))
|
|
self.branch2_3b = BasicConv2d(512, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
|
|
|
self.branch3 = nn.Sequential(
|
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
|
BasicConv2d(1536, 256, kernel_size=1, stride=1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
|
|
x1_0 = self.branch1_0(x)
|
|
x1_1a = self.branch1_1a(x1_0)
|
|
x1_1b = self.branch1_1b(x1_0)
|
|
x1 = torch.cat((x1_1a, x1_1b), 1)
|
|
|
|
x2_0 = self.branch2_0(x)
|
|
x2_1 = self.branch2_1(x2_0)
|
|
x2_2 = self.branch2_2(x2_1)
|
|
x2_3a = self.branch2_3a(x2_2)
|
|
x2_3b = self.branch2_3b(x2_2)
|
|
x2 = torch.cat((x2_3a, x2_3b), 1)
|
|
|
|
x3 = self.branch3(x)
|
|
|
|
out = torch.cat((x0, x1, x2, x3), 1)
|
|
return out
|
|
|
|
|
|
class InceptionV4(nn.Module):
|
|
def __init__(self, num_classes=1001, in_chans=3, drop_rate=0., global_pool='avg'):
|
|
super(InceptionV4, self).__init__()
|
|
self.drop_rate = drop_rate
|
|
self.global_pool = global_pool
|
|
self.num_classes = num_classes
|
|
self.num_features = 1536
|
|
|
|
self.features = nn.Sequential(
|
|
BasicConv2d(in_chans, 32, kernel_size=3, stride=2),
|
|
BasicConv2d(32, 32, kernel_size=3, stride=1),
|
|
BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1),
|
|
Mixed_3a(),
|
|
Mixed_4a(),
|
|
Mixed_5a(),
|
|
Inception_A(),
|
|
Inception_A(),
|
|
Inception_A(),
|
|
Inception_A(),
|
|
Reduction_A(), # Mixed_6a
|
|
Inception_B(),
|
|
Inception_B(),
|
|
Inception_B(),
|
|
Inception_B(),
|
|
Inception_B(),
|
|
Inception_B(),
|
|
Inception_B(),
|
|
Reduction_B(), # Mixed_7a
|
|
Inception_C(),
|
|
Inception_C(),
|
|
Inception_C(),
|
|
)
|
|
self.last_linear = nn.Linear(self.num_features, num_classes)
|
|
|
|
def get_classifier(self):
|
|
return self.classif
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
self.global_pool = global_pool
|
|
self.num_classes = num_classes
|
|
self.classif = nn.Linear(self.num_features, num_classes)
|
|
|
|
def forward_features(self, x, pool=True):
|
|
x = self.features(x)
|
|
if pool:
|
|
x = select_adaptive_pool2d(x, self.global_pool)
|
|
x = x.view(x.size(0), -1)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
if self.drop_rate > 0:
|
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
|
x = self.last_linear(x)
|
|
return x
|
|
|
|
|
|
def inception_v4(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
default_cfg = default_cfgs['inception_v4']
|
|
model = InceptionV4(num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
model.default_cfg = default_cfg
|
|
if pretrained:
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
return model
|
|
|
|
|
|
|